609 resultados para Thermochemical biofuels


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GAUSSIAN 2, GAUSSIAN 3, complete basis set-QB3, and complete basis set-APNO methods have been used to calculate ΔH∘ and ΔG∘ values for ionic clusters of hydronium and hydroxide ions complexed with water. Results for the clusters H3O+(H2O)n andOH−(H2O)n, where n=1–4 are reported in this paper, and compared against experimental values contained in the National Institutes of Standards and Technology (NIST) database. Agreement with experiment is excellent for the three ab initio methods for formation of these clusters. The high accuracy of these methods makes them reliable for calculating energetics for the formation of ionic clusters containing water. In addition this allows them to serve as a valuable check on the accuracy of experimental data reported in the NIST database, and makes them useful tools for addressing unresolved issues in atmospheric chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid–solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U.S., by using less than 0.7% of the U.S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H-2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid-solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H-2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H-2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U. S., by using less than 0.7% of the U. S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuels are alternative fuels that have the promise of reducing reliance on imported fossil fuels and decreasing emission of greenhouse gases from energy consumption. This thesis analyses the environmental impacts focusing on the greenhouse gas (GHG) emissions associated with the production and delivery of biofuel using the new Integrated Hydropyrolysis and Hydroconversion (IH2) process. The IH2 process is an innovative process for the conversion of woody biomass into hydrocarbon liquid transportation fuels in the range of gasoline and diesel. A cradle-to-grave life cycle assessment (LCA) was used to calculate the greenhouse gas emissions associated with diverse feedstocks production systems and delivery to the IH2 facility plus producing and using these new renewable liquid fuels. The biomass feedstocks analyzed include algae (microalgae), bagasse from a sugar cane-producing locations such as Brazil or extreme southern US, corn stover from Midwest US locations, and forest feedstocks from a northern Wisconsin location. The life cycle greenhouse gas (GHG) emissions savings of 58%–98% were calculated for IH2 gasoline and diesel production and combustion use in vehicles compared to fossil fuels. The range of savings is due to different biomass feedstocks and transportation modes and distances. Different scenarios were conducted to understand the uncertainties in certain input data to the LCA model, particularly in the feedstock production section, the IH2 biofuel production section, and transportation sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The jatropha plant produces seeds containing 25–40% oil by weight. This oil can be made into biodiesel. During the recent global fuel crisis, the price of crude oil peaked at over USD 130 per barrel. Jatropha attracted huge interest – it was touted as a wonder crop that could generate biodiesel oil on “marginal lands” in semi-arid areas. Its promise appeared especially great in East Africa. Today, however, jatropha’s value in East Africa appears to lie primarily in its multipurpose use by small-scale farmers, not in large-scale biofuel production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many observers view Jatropha as a miracle plant that grows in harsh environments, halts land degradation and provides seeds for fuel production. This makes it particularly attractive for use in Ethiopia, where poverty levels are high and the degradation of agricultural land is widespread. In this article, we investigate the potentials and limitations of a government-initiated Jatropha project for smallholders in northeastern Ethiopia from a green economy perspective. Data are based on a 2009 household survey and interviews with key informants, as well as on a 2012 follow-up round of interviews with key informants. We conclude that the project has not contributed to a greener economy so far, but has the potential to do so in the future. To maximize Jatropha’s potential, interventions must focus mainly on smallholders and pay more attention to the entire biofuel value chain.