992 resultados para Thermal Sensitivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Radiation therapy (RT) of malignant tumors in the head and neck area may have damaging effects on surrounding tissues. The aim of this investigation was to evaluate the effects of RI delivered by 3-dimensional conformal radiotherapy (3D-RT) or intensity-modulated radiotherapy (IMRT) on dental pulp sensitivity. Methods: Twenty patients with oral or oropharyngeal cancer receiving RT with 3D-RT or IMRT underwent cold thermal pulp sensitivity testing (PST) of 2 teeth each at 4 time points: before RT (TP1), the beginning of RT with doses between 30 and 35 Gy (TP2), the end of RT with doses between 60 and 70 Gy (TP3), and 4 to 5 months after the start of RT (TP4). Results: All 40 teeth showed positive responses to PST at TP1 (100%) and 9 at TP2 (22.5%; 3/16 [18.8%] for 3D-RT and 6/24 [25.0%] for IMRT). No tooth responded to PST at TP3 and TP4 (0%). A statistically significant difference existed in the number of positive pulp responses between different time points (TP1 through TP4) for all patients receiving RT (P <= .05), IMRT (P <= .05), and 3D-RT (P <= .05). No statistically significant differences in positive sensitivity responses were found between 3D-RT and IMRT at any time point (TP1, TP3, TP4, P = 1.0; TP2, P = .74). A statistically significant correlation existed between the location of the tumor and PST at TP2 for IMRT (P <= .05) but not for 3D-RT (P = .14). Conclusions: RT decreased the number of teeth responding to PST after doses greater than 30 to 35 Gy. The type of RT (3D-RT or IMRT) had no influence on the pulp responses to PST after the conclusion of RT. (J Endod 2012;38:148-152)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the heat flux through a domain with subregions in which the thermal capacity approaches zero. In these subregions the parabolic heat equation degenerates to an elliptic one. We show the well-posedness of such parabolic-elliptic differential equations for general non-negative L-infinity-capacities and study the continuity of the solutions with respect to the capacity, thus giving a rigorous justification for modeling a small thermal capacity by setting it to zero. We also characterize weak directional derivatives of the temperature with respect to capacity as solutions of related parabolic-elliptic problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space-based (satellite, scientific probe, space station, etc.) and millimeter – to – microscale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degradation of performance of shear/pressure driven condensers and boilers due to non-desirable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies. Shear/pressure driven condensing and boiling flow experiments are carried out in horizontal mm-scale channels with heat exchange through the bottom surface. The sides and top of the flow channel are insulated. The fluid is FC-72 from 3M Corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address under what conditions a magma generated by partial melting at 100 km depth in the mantle wedge above a subduction zone can reach the crust in dikes before stalling. We also address under what conditions primitive basaltic magma (Mg # >60) can be delivered from this depth to the crust. We employ linear elastic fracture mechanics with magma solidification theory and perform a parametric sensitivity analysis. All dikes are initiated at a depth of 100 km in the thermal core of the wedge, and the Moho is fixed at 35 km depth. We consider a range of melt solidus temperatures (800-1100 degrees C), viscosities (10-100 Pa s), and densities (2400-2700 kg m(-3)). We also consider a range of host rock fracture toughness values (50-300 MPa m(1/2)) and dike lengths (2-5 km) and two thermal structures for the mantle wedge (1260 and 1400 degrees C at 100 km depth and 760 and 900 degrees C at 35 km depth). For the given parameter space, many dikes can reach the Moho in less than a few hundred hours, well within the time constraints provided by U series isotope disequilibria studies. Increasing the temperature in the mantle wedge, or increasing the dike length, allows additional dikes to propagate to the Moho. We conclude that some dikes with vertical lengths near their critical lengths and relatively high solidus temperatures will stall in the mantle before reaching the Moho, and these may be returned by corner flow to depths where they can melt under hydrous conditions. Thus, a chemical signature in arc lavas suggesting partial melting of slab basalts may be partly influenced by these recycled dikes. Alternatively, dikes with lengths well above their critical lengths can easily deliver primitive magmas to the crust, particularly if the mantle wedge is relatively hot. Dike transport remains a viable primary mechanism of magma ascent in convergent tectonic settings, but the potential for less rapid mechanisms making an important contribution increases as the mantle temperature at the Moho approaches the solidus temperature of the magma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current standard for temperature sensitive imaging using magnetic resonance (MR) is 2-D, spoiled, fast gradient-echo (fGRE) phase-difference imaging exploiting temperature dependent changes in the proton resonance frequency (PRF). The echo-time (TE) for optimal sensitivity is larger than the typical repetition time (TR) of an fGRE sequence. Since TE must be less than TR in the fGRE sequence, this limits the technique's achievable sensitivity, spatial, and temporal resolution. This adversely affects both accuracy and volume coverage of the measurements. Accurate measurement of the rapid temperature changes associated with pulsed thermal therapies, such as high-intensity focused ultrasound (FUS), at optimal temperature sensitivity requires faster acquisition times than those currently available. ^ Use of fast MR acquisition strategies, such as interleaved echo-planar and spiral imaging, can provide the necessary increase in temporal performance and sensitivity while maintaining adequate signal-to-noise and in-plane spatial resolution. This research explored the adaptation and optimization of several fast MR acquisition methods for thermal monitoring of pulsed FUS thermal therapy. Temperature sensitivity, phase-difference noise and phase-difference to phase-difference-to noise ratio for the different pulse sequences were evaluated under varying imaging parameters in an agar gel phantom to establish optimal sequence parameters for temperature monitoring. The temperature sensitivity coefficient of the gel phantom was measured, allowing quantitative temperature extrapolations. ^ Optimized fast sequences were compared based on the ability to accurately monitor temperature changes at the focus of a high-intensity focused ultrasound unit, volume coverage, and contrast-to-noise ratio in the temperature maps. Operating parameters, which minimize complex phase-difference measurement errors introduced by use of the fast-imaging methods, were established. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sunrise is a solar telescope, successfully flown in June 2009 with a long duration balloon from the Swedish Space Corporation Esrange launch site. The design of the thermal control of SUNRISE was quite critical because of the sensitivity to temperature of the optomechanical devices and the electronics. These problems got more complicated due the size and high power dissipation of the system. A detailed thermal mathematical model of SUNRISE was set up to predict temperatures. In this communication the thermal behaviour of SUNRISE during flight is presented. Flight temperatures of some devices are presented and analysed. The measured data have been compared with the predictions given by the thermal mathematical models. The main discrepancies between flight data and the temperatures predicted by the models have been identified. This allows thermal engineers to improve the knowledge of the thermal behaviour of the system for future missions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS).We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the efects of some key parameters such as reactor wall emissivity, gas distributor temperature, etc., on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.