943 resultados para The Crucible
Resumo:
Several pathogenic strains of Escherichia coli exploit type III secretion to inject effector proteins into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of > 60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into > 20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in > 20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage metagenome, acting as a crucible for the evolution of pathogenicity.
Resumo:
The deoxidation of steel with complex deoxidisers was studied at 1550°C and compared with silicon, aluminium and silicon/aluminium alloys as standards. The deoxidation alloy systems, Ca/Si/Al, Mg/Si/Al and Mn/Si/Al, were chosen for the low liquidus temperatures of many of their oxide mixtures and the potential deoxidising power of their constituent elements. Product separation rates and compositional relationships following deoxidation were examined. Silicon/aluminium alloy deoxidation resulted in the product compositions and residual oxygen contents expected from equilibrium and stoichiometric considerations, but with the Ca/Si/Al and Mg/Si/Al alloys the volatility of calcium and magnesium prevented them participating in the final solute equilibrium, despite their reported solubility in liquid iron. Electron-probe microanalysis of the products showed various concentrations of lime and magnesia, possibly resulting from reaction between the metal vapours and dissolved oxygen.The consequent reduction of silica activity in the products due to the presence of CaO and hgO produced an indirect effect of calcium and magnesium on the residual oxygen content. Product separation rates, indicated by vacuum fusion analyses, were not significantly influenced by calcium and magnesium but the rapid separation of products having a high Al2O3Si02 ratio was confirmed. Manganese participated in deoxidation, when present either as an alloying element in the steel or as a deoxidation alloy constituent. The compositions of initial oxide products were related to deoxidation alloy compositions. Separated products which were not alumina saturated, dissolved crucible material to achieve saturation. The melt equilibrated with this slag and crucible by diffusion to determine the residual oxygen content. MnO and SiO2 activities were calculated, and the approximate values of MnO deduced for the compositions obtained. Separation rates were greater for products of high interfacial tension. The rates calculated from a model based on Stoke's Law, showed qualitative agreement with experimental data when corrected for coalescence effects.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.
Resumo:
Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.