77 resultados para Théorème Kesten-Stigum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous étudions en détail un modèle appelé modèle gamma-omega, qui permet de jouer sur les moments de paiement de dividendes ainsi que sur une ruine non-standard de la compagnie. Plusieurs extensions de la littérature sont faites, motivées par des considérations liées à la solvabilité. La première consiste à adapter des résultats d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité d’une stratégie de barrière pour le paiement des dividendes dans le modèle gamma-omega. La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière concerne deux différentes approches à adopter en cas de passage sous le seuil de ruine. Une liquidation forcée du surplus est mise en place dans un premier cas, en parallèle d’une liquidation à la première opportunité en cas de mauvaises prévisions de dividendes. Un processus d’injection de capital est expérimenté dans le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des dividendes espérés. Des illustrations numériques sont proposées pour chaque section, lorsque cela s’avère pertinent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notre travail se consacre à l’étude de l’existence de solution T-anti-périodique de l’équation de Liénard dans le cas impulsif. Dans notre thèse, cette équation sera appliquée à l’équation du pendule simple, de Josephson dans la super-conductivité et enfin à l’équation de Van der Pol pour modéliser un circuit de triode à tube vide. On considérera [florin] et J des actions extérieures sur le système où [florin] est une force Lebesgue intégrable (respectivement Henstock-Kurzweil intégrable au second chapitre) et J (parfois noté I) une stimulation impulsive. En appliquant le théorème du point fixe de Banach, on obtient des théorèmes d’existence de solution au sens de fonctions généralisées soumise à un ensemble de conditions données par les bornes à priori. Ensuite, par le même théorème, la suite d’itérations G[indice supérieur n] ([théta][indice inférieur 0]) converge uniformément vers la solution [théta] à la vitesse de convergence bornée avec la première dérivée […] est de variation totale finie sur [0; 2T] et la dérivée seconde généralisée […] Lebesgue intégrable sur [0; 2T] dans le cas non impulsif. Finalement, sous les mêmes hypothèses avec [florin] Henstock-Kurzweil (HK) intégrable, nous obtiendrons des conditions qui garantissent l’existence d’une solution T-antipériodique [théta] absolument continue sur R de l’équation de Liénard, qui admet à la fois une dérivée première […] de variation bornée et la seconde dérivée généralisée […] qui est HK--intégrable dans le cas non impulsif. Comme au premier chapitre nous considérerons également le cas des instants d’impulsion [gamma][indice inférieur kappa] indépendants d’état avec [florin] HK--intégrable. À chaque fois nous donnons quelques exemples d’illustration pour appuyer nos résultats. [Certains symboles non conformes]