654 resultados para Textiles.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear (fiber or yarn) supercapacitors have demonstrated remarkable cyclic electrochemical performance as power source for wearable electronic textiles. The challenges are, first, to scale up the linear supercapacitors to a length that is suitable for textile manufacturing while their electrochemical performance is maintained or preferably further improved and, second, to develop practical, continuous production technology for these linear supercapacitors. Here, we present a core/sheath structured carbon nanotube yarn architecture and a method for one-step continuous spinning of the core/sheath yarn that can be made into long linear supercapacitors. In the core/sheath structured yarn, the carbon nanotubes form a thin surface layer around a highly conductive metal filament core, which serves as current collector so that charges produced on the active materials along the length of the supercapacitor are transported efficiently, resulting in significant improvement in electrochemical performance and scale up of the supercapacitor length. The long, strong, and flexible threadlike supercapacitor is suitable for production of large-size fabrics for wearable electronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
In this study, a model was set up for simulating the effects of varying fiber cross-sectional shapes on ultraviolet protection of fibers. The fiber diameter and fiber type were also involved in the model setting. Experiments of diffuse reflectance spectra measurement on natural (wool, cotton, silk), regenerated (bamboo viscose) and synthetic (polyester, nylon) fibers were conducted to verify the model predicted results. When a more complex shape was assumed as the fiber cross-section for model calculation, the predicted results have a better agreement with the actual results. The effects on ultraviolet absorption from fibers with different cross-sectional shapes were investigated at a single fiber, fiber bundle and yarn levels. With the same material, when the fiber cross-sectional area and the areal coverage of a single fiber were constant, the triangular shape had the lowest ultraviolet transmittance and the highest ultraviolet reflectance for a single fiber and also for a fiber bundle. The difference of fiber cross-sectional shapes was also significant in the ultraviolet protection of a single yarn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the methods used for the design and fabrication of a capacitance based wearable pressure sensor fabricated using neoprene and (SAC) plated Nylon Fabric. The experimental set up for the pressure sensor is comprised of a shielded grid of sensing modules, a 555 timer based transduction circuitry, and an Arduino board measuring the frequency of signal to a corresponding pressure. The fundamental design parameters addressed during the development of the pressure sensor presented in this paper are based on size, simplicity, cost, adaptability, and scalability. The design approach adopted in this paper results in a sensor module that is less obtrusive, has a thinner and flexible profile, and its sensitivity is easily scalable for ‘smart’ product applications across industries associated to sports performance, ergonomics, rehabilitation, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses design and fabrication processes in the development of a wearable and flexible conductive resistive sensor. The design and development of the sensor involve the use of Sn-Ag-Cu (SAC)plated Nylon fabric, precisionfused deposition modeling(FDM) using silicone and petrolatum for etch-resistant masks using the EnvisionTEC GmbH Bioplotter, and wet etching using Chromium, Ammonium Persulphate, and Salt-Vinegar etching solutions. Preliminary testing with other mask types, development processes, and sensor design approaches for various applications are discussed.