974 resultados para Termo topológico de Chern-Simons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we compute the static potential in scalar QED(3) at leading order in 1/Nf. We show that the addition of a non-minimal coupling of Pauli-type (is an element of(mu nu alpha)j(mu)partial derivative(nu)A(alpha)), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic ( confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behaviour of the potential turning it into a constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We start this work by revisiting the problem of the soldering of two chiral Schwinger models of opposite chiralities. We verify that, different from what one can conclude from the current literature, the usual sum of these models is, in fact, gauge invariant and corresponds to a composite model, where the component models are the vector and axial Schwinger models. As a consequence, we reinterpret this formalism as a kind of degree of freedom reduction mechanism. This result has led us to discover a second soldering possibility giving rise to the axial Schwinger model. This new result is seemingly rather general. We explore it here in the soldering of two Maxwell-Chern-Simons theories with different masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from a decomposition of the self-dual field in (2 + 1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it with the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in 1/m. Some problems related to the number of poles of the effective propagator are also addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the (2 + 1)-dimensional massive Thirring model as a gauge theory, with one-fermion flavor, in the framework of the causal perturbation theory and address the problem of dynamical mass generation for the gauge boson. In this context we obtain an unambiguous expression for the coefficient of the induced Chern-Simons term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we describe the most general coupling of abelian vector and tensor multiplets to six-dimensional (1,0) supergravity. As was recently pointed out, it is of interest to consider more general Chern-Simons couplings to abelian vectors of the type H(r) = dB(r) - 1/2 c(rab)AadAb, with c(r) matrices that may not be simultaneously diagonalized. We show that these couplings can be related to Green-Schwarz terms of the form B(r)c(r)/abFaFb, and how the complete local Lagrangian, that embodies factorized gauge and supersymmetry anomalies (to be disposed of by fermion loops) is uniquely determined by Wess-Zumino consistency conditions, aside from an arbitrary quartic coupling for the gauginos. (C) 2000 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ten-dimensional superparticle is covariantly quantized by constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor variable. This same method was recently used for covariantly quantizing the superstring, and it is hoped that the simpler case of the superparticle will be useful for those who want to study this quantization method. It is interesting that quantization of the superparticle action closely resembles quantization of the worldline action for Chern-Simons theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the equations of motion for the Neveu-Schwarz (NS) and Ramond (R) sectors of open superstring field theory can be covariantly expressed in terms of one NS and one R string field, picture-changing problems prevent the construction of an action involving these two string fields. However, a consistent action can be constructed by dividing the NS and R states into three string fields which are real, chiral and antichiral. The open superstring field theory action includes a WZW-like term for the real field and holomorphic Chern-Simons-like terms for the chiral and antichiral fields. Different versions of the action can be constructed with either manifest d = 8 Lorentz covariance or manifest TV = 1 d = 4 super-Poincaré covariance. The lack of a manifestly d = 10 Lorentz covariant action is related to the self-dual five-form in the type-IIB R-R sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute M = 4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes. © SISSA/ISAS 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach. © SISSA 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)