351 resultados para Terahertz (THz)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented of an examination of flow rock-covered Paleoloithic cave art using time-domain terahertz reflectometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Techniques to retrieve reliable images from complicated objects are described, overcoming problems introduced by uneven surfaces, giving enhanced depth resolution and improving image contrast. The techniques are illustrated with application to THz imaging of concealed wall paintings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic (CO2)-C-13 laser was used for the first time as a pump source for this molecule, and a Fabry-Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 mu m (0.987 THz) to 725.1 mu m (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used our new pulsed CO(2) laser, operating both on regular and hot bands, to excite the (13)CD(3)OH methanol isotopomer. This has lead to the observation of 13 new high-threshold far-infrared laser emissions (also identified as terahertz laser lines), with frequencies in the range between 24.11 and 102.56 cm(-1) (0.72-3.07 THz). The absorption transitions leading to these new FIR laser emissions have been located by observing the optoacoustic absorption spectra around the CO(2) emissions. Here, we present these new far-infrared laser lines, characterized in wavelength, polarization, offset relative to the center of the pumping CO(2) laser transition, relative intensity, and optimum operation pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a (CO2)-C-13 laser as optical pumping source to search for new THz laser lines generated from (CH3OH)-C-13. Nineteen new THz laser lines (also identified as far-infrared, FIR) ranging from 42.3 mu m (7.1 THz) to 717.7 mu m (0.42 THz) are reported. They are characterized in wavelength, offset, relative polarization, relative intensity, and optimum working pressure. We have assigned eight laser lines to specific rotational energy levels in the excited state associated with the C-O stretching mode. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report new optically pumped terahertz laser lines from DCOOD. An isotopic 13CO2 laser was used for first time as pump source, and a Fabry-Perot open cavity was used as a terahertz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new terahertz laser lines. We could observe six new laser lines in the range from 303.8μm (0.987 THz) to 725.1μm (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred Lamb-dip technique was used to measure the frequency absorption transition both for this laser lines. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present coherent control of a THz meta-material. Specifically, we show in detail the time and frequency dependent response of a single and a double split ring resonator upon excitation with a shaped THz field. Through far- and near-field measurements, we confirm the coherence transfer from the tailored THz field to the system and back to the radiated field and we demonstrate selective excitation of a designated system resonance with a suitably shaped THz pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present three methods for the distortion-free enhancement of THz signals measured by electro-optic sampling in zinc blende-type detector crystals, e.g., ZnTe or GaP. A technique commonly used in optically heterodyne-detected optical Kerr effect spectroscopy is introduced, which is based on two measurements at opposite optical biases near the zero transmission point in a crossed polarizer detection geometry. In contrast to other techniques for an undistorted THz signal enhancement, it also works in a balanced detection scheme and does not require an elaborate procedure for the reconstruction of the true signal as the two measured waveforms are simply subtracted to remove distortions. We study three different approaches for setting an optical bias using the Jones matrix formalism and discuss them also in the framework of optical heterodyne detection. We show that there is an optimal bias point in realistic situations where a small fraction of the probe light is scattered by optical components. The experimental demonstration will be given in the second part of this two-paper series [J. Opt. Soc. Am. B, doc. ID 204877 (2014, posted online)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of coherently driven photomixers with antenna (antenna emitter arrays, AEAs) have been evaluated as a possibility to overcome the power limitations of individual conventional photomixers with antenna (?antenna emitters?, AEs) for the generation of continuous-wave (CW) THz radiation. In this paper, ?large area emitters? (LAEs) are proposed as an alternative approach, and compared with AEAs. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in favorable radiation profiles without side lobes. Moreover, the achievable THz power is expected to outnumber even large AEAs. Last not least, the technological challenge of fabricating LAEs appears to be significantly less demanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La región del espectro electromagnético comprendida entre 100 GHz y 10 THz alberga una gran variedad de aplicaciones en campos tan dispares como la radioastronomía, espectroscopíamolecular, medicina, seguridad, radar, etc. Los principales inconvenientes en el desarrollo de estas aplicaciones son los altos costes de producción de los sistemas trabajando a estas frecuencias, su costoso mantenimiento, gran volumen y baja fiabilidad. Entre las diferentes tecnologías a frecuencias de THz, la tecnología de los diodos Schottky juega un importante papel debido a su madurez y a la sencillez de estos dispositivos. Además, los diodos Schottky pueden operar tanto a temperatura ambiente como a temperaturas criogénicas, con altas eficiencias cuando se usan como multiplicadores y con moderadas temperaturas de ruido en mezcladores. El principal objetivo de esta tesis doctoral es analizar los fenómenos físicos responsables de las características eléctricas y del ruido en los diodos Schottky, así como analizar y diseñar circuitos multiplicadores y mezcladores en bandas milimétricas y submilimétricas. La primera parte de la tesis presenta un análisis de los fenómenos físicos que limitan el comportamiento de los diodos Schottky de GaAs y GaN y de las características del espectro de ruido de estos dispositivos. Para llevar a cabo este análisis, un modelo del diodo basado en la técnica de Monte Carlo se ha considerado como referencia debido a la elevada precisión y fiabilidad de este modelo. Además, el modelo de Monte Carlo permite calcular directamente el espectro de ruido de los diodos sin necesidad de utilizar ningún modelo analítico o empírico. Se han analizado fenómenos físicos como saturación de la velocidad, inercia de los portadores, dependencia de la movilidad electrónica con la longitud de la epicapa, resonancias del plasma y efectos no locales y no estacionarios. También se ha presentado un completo análisis del espectro de ruido para diodos Schottky de GaAs y GaN operando tanto en condiciones estáticas como variables con el tiempo. Los resultados obtenidos en esta parte de la tesis contribuyen a mejorar la comprensión de la respuesta eléctrica y del ruido de los diodos Schottky en condiciones de altas frecuencias y/o altos campos eléctricos. También, estos resultados han ayudado a determinar las limitaciones de modelos numéricos y analíticos usados en el análisis de la respuesta eléctrica y del ruido electrónico en los diodos Schottky. La segunda parte de la tesis está dedicada al análisis de multiplicadores y mezcladores mediante una herramienta de simulación de circuitos basada en la técnica de balance armónico. Diferentes modelos basados en circuitos equivalentes del dispositivo, en las ecuaciones de arrastre-difusión y en la técnica de Monte Carlo se han considerado en este análisis. El modelo de Monte Carlo acoplado a la técnica de balance armónico se ha usado como referencia para evaluar las limitaciones y el rango de validez de modelos basados en circuitos equivalentes y en las ecuaciones de arrastredifusión para el diseño de circuitos multiplicadores y mezcladores. Una notable característica de esta herramienta de simulación es que permite diseñar circuitos Schottky teniendo en cuenta tanto la respuesta eléctrica como el ruido generado en los dispositivos. Los resultados de las simulaciones presentados en esta parte de la tesis, tanto paramultiplicadores comomezcladores, se han comparado con resultados experimentales publicados en la literatura. El simulador que integra el modelo de Monte Carlo con la técnica de balance armónico permite analizar y diseñar circuitos a frecuencias superiores a 1 THz. ABSTRACT The terahertz region of the electromagnetic spectrum(100 GHz-10 THz) presents a wide range of applications such as radio-astronomy, molecular spectroscopy, medicine, security and radar, among others. The main obstacles for the development of these applications are the high production cost of the systems working at these frequencies, highmaintenance, high volume and low reliability. Among the different THz technologies, Schottky technology plays an important rule due to its maturity and the inherent simplicity of these devices. Besides, Schottky diodes can operate at both room and cryogenic temperatures, with high efficiency in multipliers and moderate noise temperature in mixers. This PhD. thesis is mainly concerned with the analysis of the physical processes responsible for the characteristics of the electrical response and noise of Schottky diodes, as well as the analysis and design of frequency multipliers and mixers at millimeter and submillimeter wavelengths. The first part of the thesis deals with the analysis of the physical phenomena limiting the electrical performance of GaAs and GaN Schottky diodes and their noise performance. To carry out this analysis, a Monte Carlo model of the diode has been used as a reference due to the high accuracy and reliability of this diode model at millimeter and submillimter wavelengths. Besides, the Monte Carlo model provides a direct description of the noise spectra of the devices without the necessity of any additional analytical or empirical model. Physical phenomena like velocity saturation, carrier inertia, dependence of the electron mobility on the epilayer length, plasma resonance and nonlocal effects in time and space have been analysed. Also, a complete analysis of the current noise spectra of GaAs and GaN Schottky diodes operating under static and time varying conditions is presented in this part of the thesis. The obtained results provide a better understanding of the electrical and the noise responses of Schottky diodes under high frequency and/or high electric field conditions. Also these results have helped to determine the limitations of numerical and analytical models used in the analysis of the electrical and the noise responses of these devices. The second part of the thesis is devoted to the analysis of frequency multipliers and mixers by means of an in-house circuit simulation tool based on the harmonic balance technique. Different lumped equivalent circuits, drift-diffusion and Monte Carlo models have been considered in this analysis. The Monte Carlo model coupled to the harmonic balance technique has been used as a reference to evaluate the limitations and range of validity of lumped equivalent circuit and driftdiffusion models for the design of frequency multipliers and mixers. A remarkable feature of this reference simulation tool is that it enables the design of Schottky circuits from both electrical and noise considerations. The simulation results presented in this part of the thesis for both multipliers and mixers have been compared with measured results available in the literature. In addition, the Monte Carlo simulation tool allows the analysis and design of circuits above 1 THz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon micromachined waveguide components operating in the WM-250 (WR-1) waveguide band (0.75 to 1.1 THz) are measured. Through lines are used to characterize the waveguide loss with and without an oxide etch to reduce the surface roughness. A sidewall roughness of 100nm is achieved, enabling a waveguide loss of 0.2dB/mm. A 1THz band-pass filter is also measured to characterize the precision of fabrication process. A 1.8% shift in frequency is observed and can be accounted for by the 0.5deg etch angle and 2um expansion of the features by the oxide etch. The measured filter has a 13% 3dB bandwidth and 2.5dB insertion loss through the passband.