940 resultados para Temperature Change
Resumo:
Temperature-dependent population growth of diamondback moth (DBM) Plutella xylostella (L.), a prolific insect pest of crucifer vegetables, was studied under six constant temperatures in the laboratory. The objective of the study was to predict the impacts of temperature changes on the population of DBM at high-resolution scales along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted on the data for modeling the development, mortality, longevity and oviposition of the pest. The best-fitted functions for each life stage were compiled for estimating the life table parameters of the species by stochastic simulations. To quantify the impacts on the pest, three indices (establishment, generation and activity) were computed using the estimates of life table parameters and temperature data obtained at local scale (current scenario 2013) and downscaled climate change data (future scenario 2055) from the AFRICLIM database. To measure and represent the impacts of temperature change along the altitude on the pest; the indices were mapped along the altitudinal gradients of Kilimanjaro and Taita Hills, in Tanzania and Kenya, respectively. Potential impact of the changes between climate scenarios 2013 and 2055 was assessed. The data files included in this database were utilized for the above analysis to develop temperature dependent phenology of Plutella xylostella to assess current and future distribution along eastern African Afromontanes.
Resumo:
The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.
Resumo:
A fully distributed temperature sensor consisting of a chirped fibre Bragg grating has been demonstrated. By fitting a numerical model of the grating response including temperature change, position and width of localized heating applied to the grating, we achieve measurements of these parameters to within 2.2 K, 149 µm and 306 µm of applied values, respectively. Assuming that deviation from linearity is accounted for in making measurement, much higher precision is achievable and the standard deviations for these measurements are 0.6 K, 28.5 µm and 56.0 µm, respectively.
Effect of a commercially available warm compress on eyelid temperature and tear film in healthy eyes
Resumo:
Purpose: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. Methods: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. Results: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 +/- 1.2[degrees]C vs. 0.3 +/- 0.5[degrees]C, F = 20.533, p < 0.001; NITBUT change, 4.0 +/- 2.3 seconds vs. 0.4 +/- 1.7 seconds, p < 0.001; TFLLT change, 2.0 +/- 0.9 grades vs. 0.1 +/- 0.4 grades, Z = -4.035, p < 0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 +/- 0.7[degrees]C vs. 0.1 +/- 0.3[degrees]C, F = 14.247, p < 0.001; NITBUT change, 3.6 +/- 2.1 seconds vs. 0.1 +/- 1.9 seconds, p < 0.001; TFLLT change, 1.5 +/- 0.9 vs. 0.2 +/- 0.5 grades, Z = -3.835, p < 0.001). No adverse events occurred during the study. Conclusions: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. © 2013 American Academy of Optometry
Resumo:
A fully distributed temperature sensor consisting of a chirped fibre Bragg grating has been demonstrated. By fitting a numerical model of the grating response including temperature change, position and width of localized heating applied to the grating, we achieve measurements of these parameters to within 2.2 K, 149 μm and 306 μm of applied values, respectively. Assuming that deviation from linearity is accounted for in making measurement, much higher precision is achievable and the standard deviations for these measurements are 0.6 K, 28.5 μm and 56.0 μm, respectively. © 2004 IOP Publishing Ltd.
Effect of a commercially available warm compress on eyelid temperature and tear film in healthy eyes
Resumo:
PURPOSE: To evaluate eyelid temperature change and short-term effects on tear film stability and lipid layer thickness in healthy patients using a commercially available warm compress (MGDRx EyeBag) for ophthalmic use. METHODS: Eyelid temperature, noninvasive tear film breakup time (NITBUT), and tear film lipid layer thickness (TFLLT) of 22 healthy subjects were measured at baseline, immediately after, and 10 minutes after application of a heated eyebag for 5 minutes to one eye selected at random. A nonheated eyebag was applied to the contralateral eye as a control. RESULTS: Eyelid temperatures, NITBUT, and TFLLT increased significantly from baseline in test eyes immediately after removal of the heated eyebag compared with those in control eyes (maximum temperature change, 2.3 ± 1.2 °C vs. 0.3 ± 0.5 °C, F = 20.533, p <0.001; NITBUT change, 4.0 ± 2.3 seconds vs. 0.4 ± 1.7 seconds, p <0.001; TFLLT change, 2.0 ± 0.9 grades vs. 0.1 ± 0.4 grades, Z = -4.035, p <0.001). After 10 minutes, measurements remained significantly higher than those in controls (maximum temperature change, 1.0 ± 0.7 °C vs. 0.1 ± 0.3 °C, F = 14.247, p <0.001; NITBUT change, 3.6 ± 2.1 seconds vs. 0.1 ± 1.9 seconds, p <0.001; TFLLT change, 1.5 ± 0.9 vs. 0.2 ± 0.5 grades, Z = -3.835, p <0.001). No adverse events occurred during the study. CONCLUSIONS: The MGDRx EyeBag is a simple device for heating the eyelids, resulting in increased NITBUT and TFLLT in subjects without meibomian gland dysfunction that seem to be clinically significant. Future studies are required to determine clinical efficacy and evaluate safety after long-term therapy in meibomian gland dysfunction patients. Copyright © 2014 American Academy of Optometry.
Resumo:
Simultaneous strain and temperature measurement for advanced 3-D braided composite materials using fibre-optic sensor technology is demonstrated, for the first time. These advanced 3-D braided composites can virtually eliminate the most serious problem of delamination for conventional composites. A tandem in-fibre Bragg-grating (FBG)/extrinsic Fabry-Perot interferometric sensor (EFPI) system with improved accuracy has been used to facilitate simultaneous temperature and strain measurement in this work. The non-symmetric distortion of the optical spectrum of the FBG, due to the combination of the FBG and the EFPI, is observed for the first time. Experimental and theoretical studies indicate that this type of distortion can affect the measurement accuracy seriously and it is mainly caused by the modulation of the periodic output of the EFPI. A simple method has been demonstrated to improve the accuracy for detection of the wavelength-shift of the FBG induced by temperature change. A strain accuracy of ∼ ±20 με and a temperature accuracy of ∼ ±1 °C have been achieved, which can meet the requirements for practical applications of 3-D braided composites. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Chironomid headcapsules were used to reconstruct late glacial and early-Holocene summer temperatures at Lago Piccolo di Avigliana (LPA). Two training sets (northern Sweden, North America) were used to infer temperatures. The reconstructed patterns of temperature change agreed well with the GRIP and NGRIP d18O records. Inferred temperatures were high during the Bølling (ca 19 °C), slowly decreased to ca 17.5 °C during the Allerød, reached lowest temperatures (ca 16 °C) during the Younger Dryas, and increased to ca. 18.5 °C during the Preboreal. The amplitudes of change at climate transitions (i.e. Oldest Dryas/Bølling: 3 °C, Allerød/Younger Dryas: 1.5 °C, and Younger Dryas/Preboreal: 2.5 °C) were smaller than in the northern Alps but similar to those recorded at another site in northeastern Italy. Our results suggest that (1) Allerød temperatures were higher in the southern Alps and (2) higher during the Preboreal (1 °C) than during the Allerød. These differences might provide an explanation for the different responses of terrestrial-vegetation to late glacial and early-Holocene climatic changes in the two regions. Other sites on both sides of the Alps should be studied to confirm these two hypotheses.