969 resultados para Tectonic compartimentalization
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Resumo:
In dieser Studie werden strukturgeologische, metamorphe und geochronologische Daten benutzt, um eine Quantifizierung tektonischer Prozesse vorzunehmen, die für die Exhumierung der Kykladischen Blauschiefereinheit in der Ägäis und der Westtürkei verantwortlich waren. Bei den beiden tektonischen Prozessen handelt es sich um: (1) Abschiebungstektonik und (2) vertikale duktile Ausdünnung. Eine finite Verformungsanalyse an Proben der Kykladischen Blauschiefereinheit ermöglicht eine Abschätzung des Beitrags von vertikaler duktiler Ausdünnung an der gesamten Exhumierung. Kalkulationen mit einem eindimensionalen, numerischen Model zeigt, daß vertikale duktile Ausdünnung nur ca. 10% an der gesamten Exhumierung ausmacht. Kinematische, metamorphe und geochronologische Daten erklären die tektonische Natur und die Evolution eines extensionalen Störungssystems auf der Insel Ikaria in der östlichen Ägäis. Thermobarometrische Daten lassen erkennen, daß das Liegende des Störungssystems aus ca. 15 km Tiefe exhumiert wurde. Sowohl Apatit- und Zirkonspaltspurenalter als auch Apatit (U-Th)/He-Alter zeigen, daß sich das extensionale Störungssystem zwischen 11-3 Ma mit einer Geschwindigkeit von ca. 7-8 km/Ma bewegte. Spät-Miozäne Abschiebungen trugen zur Exhumierung der letzten ~5-15 km der Hochdruckgesteine bei. Ein Großteil der Exhumierung der Kykladischen Blauschiefereinheit muß vor dem Miozän stattgefunden haben. Dies wird durch einen Extrusionskeil erklärt, der ca. 30-35 km der Kykladischen Blauschiefereinheit in der Westtürkei exhumierte. 40Ar/39Ar und 87Rb/86Sr Datierungen an Myloniten des oberen Abschiebungskontakts zwischen der Selçuk Decke und der darunterliegenden Ampelos/Dilek Decke der Kykladischen Blauschiefereinheit als auch des unteren Überschiebungskontakts zwischen der Ampelos/Dilek Decke und den darunterliegenden Menderes Decken zeigt, daß sich beide mylonitische Zonen um ca. ~35 Ma formten, was die Existenz eines Spät-Eozänen/Früh-Oligozänen Extrusionskeils beweist.
Resumo:
I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.
Resumo:
In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.
Resumo:
Erneute Untersuchungen der mesozoischen Faltenstruktur des Otago Schiefergürtels, Südinsel, Neuseeland, zeigen, dass diese aus zwei aufeinander folgenden, ähnlichen, asymmetrischen, offenen bis mäßig engen Großfaltengenerationen im km- Größenbereich besteht anstatt aus den vorher angenommenen Decken- oder Halbfalten. Hauptproblem der Großfaltenstruktur sind Zonen von durchgreifender Boudinage, die in der Nähe der Großfaltenscharniere entstanden sind. Vorherige Bearbeiter deuteten diese Zonen als 'starke Verformungszonen' oder Überschiebungszonen. Diese Arbeit zeigt, dass in diesen Zonen nur durch die asymmetrische Faltung die unteren liegenden Schenkel der Großfalten boudiniert und somit häufig die ansonsten typischen Faltenstrukturen des liegenden Schenkels einer symmetrischen Faltung überprägt wurden. Ein weiteres Problem dieser mesozoischen Großfaltenstruktur ist die Überprägung einer Faltengeneration auf eine frühere. Weil die Verkürzungsrichtung der überprägenden Faltengeneration nicht subparallel zur älteren Faltenachse ist, sondern einen Winkel von rund 30 Grad einschließt, ist ein Wechsel von orthogonalen zu koaxialen Interferenzmustern der Kleinfalten beobachtbar. Folglich ist die Orientierung der Scheitellinie einer überprägenden und überprägten Kleinfalte nicht unbedingt subparallel zur Orientierung der Faltenachse der Großfalte trotz zylindrischer Faltung. Im letzten Teil dieser Arbeit wird die Überprägung der mesozoischen Großfaltenstruktur durch das känozoisch entstandene, transpressionale Alpine Störungssystem, das einen zweiseitigen Falten- und Überschiebungsgürtel im Otago und im Nordwesten anschließenden Alpinen Schiefergürtel bildet, beschrieben.
Resumo:
Con questa tesi di laurea si muovono i primi passi di una ricerca applicata finalizzata alla costruzione-deposizione di materiale da parte di sciami di mini-robot dal comportamento indipendente che si coordinano tramite segnali lasciati e rilevati nell’ambiente in cui si muovono. Lo sviluppo di tecniche di progettazione e fabbricazione digitale ha prodotto un aumento nel grado di interconnessione tra tecnologia e design, dunque, di nuove possibilità tettoniche. Le relazioni tettoniche tradizionali stanno infatti subendo una trasformazione radicale, potendo essere esplicitamente informate e dunque mediate attraverso gli strumenti digitali dall’ideazione alla produzione. Questa mediazione informata del contenuto tettonico (che opera costantemente) è distintivo di un approccio material-based alla progettazione che aumenta l’integrazione tra struttura, materia e forma entro le tecnologie di fabbricazione (R.Oxman). Dei numerosi processi di fabbricazione per l’architettura che si servono di tecnologia robotica, pochi sono capaci di superare la logica gerarchica, rigida e lineare-sequenziale che serve di fatto agli obiettivi di automazione ed ottimizzazione. La distribuzione di forme di intelligenza semplificata ad un numero elevato di unità robot è quindi qui proposta come alternativa al modello appena descritto. Incorporando semplici decisioni di carattere architettonico negli agenti-robot che costituiscono il sistema distribuito di entità autonome, la loro interazione e le decisioni prese individualmente producono comportamento collettivo e l’integrazione delle suddette relazioni tettoniche. Nello sviluppo del progetto, si è fatto così riferimento a modelli comportamentali collettivi (di sciame) osservabili in specie comunitarie che organizzano strutture materiali -come termiti e vespe- ed in organismi semplici -come le muffe cellulari della specie Physarum polycephalum. Per queste specie biologiche il processo di costruzione non dipende da un ‘piano generale’ ma è guidato esclusivamente da azioni dei singoli individui che comunicano lasciando tracce chimiche nell’ambiente e modificano il loro comportamento rilevando le tracce lasciate dagli altri individui. A questo scopo, oltre alle simulazioni in digitale, è stato indispensabile sviluppare dei prototipi funzionali di tipo fisico, ovvero la realizzazione di mini-robot dal movimento indipendente, in grado di coordinarsi tra loro tramite segnali lasciati nell’ambiente e capaci di depositare materiale.
Resumo:
An overview of geologic constraints on the age and extent of the Great Falls tectonic zone, a northeast-trending set of faults identified in west-central Montana.
Resumo:
The outermost layer of the Earth is broken into tectonic plates whose motions cause earthquakes and volcanism. Much of what we know about the structure of these plates comes from studying the Earth's surface. Seismic waves recorded by the EarthScope Transportable Array, however, show us the internal structure of plates down to 200 km deep and help us understand the relationship between deep structure and the Earth's surface. EarthScope images for the western United States hint at the presence of the mid-depth discontinuities. To better understand these features, Dr. Lekic relates them to the geologic history of the west.
Resumo:
[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.