774 resultados para Teaching Teachers for the Future Project
Resumo:
Indoor air pollution from combustion of solid fuels is the fifth leading contributor to disease burden in low-income countries. This, and potential to reduce environmental impacts, has resulted in emphasis on use of improved stoves. However, many efforts have failed to meet expectations and effective coverage remains limited. A disconnect exists between technologies, delivery methods, and long-term adoption. The purpose of this research is to develop a framework to increase long-term success of improved stove projects. The framework integrates sustainability factors into the project life-cycle. It is represented as a matrix and checklist which encourages consideration of social, economic, and environmental issues in projects. A case study was conducted in which an improved stove project in Honduras was evaluated using the framework. Results indicated areas of strength and weakness in project execution and highlighted potential improvements for future projects. The framework is also useful as a guide during project planning.
Resumo:
An international graduate teaching assistant‘s way of speaking may pose a challenge for college students enrolled in STEM courses at American universities. Students commonly complain that unfamiliar accents interfere with their ability to comprehend the IGTA or that they have difficulty making sense of the IGTA‘s use of words or phrasing. These frustrations are echoed by parents who pay tuition bills. The issue has provoked state and national legislative debates over universities‘ use of IGTAs. However, potentially productive debates and interventions have been stalemated due to the failure to confront deeply embedded myths and cultural models that devalue otherness and privilege dominant peoples, processes, and knowledge. My research implements a method of inquiry designed to identify and challenge these cultural frameworks in order to create an ideological/cultural context that will facilitate rather than impede the valuable efforts that are already in place. Discourse theorist Paul Gee‘s concepts of master myth, cultural models, and meta-knowledge offer analytical tools that I have adapted in a unique research approach emphasizing triangulation of both analytic methods and data sites. I examine debates over IGTA‘s use of language in the classroom among policy-makers, parents of college students, and scholars and teachers. First, the article "Teach Impediment" provides a particularly lucid account of the public debate over IGTAs. My analysis evidences the cultural hold of the master myth of monolingualism in public policy-making. Second, Michigan Technological University‘s email listserve Parentnet is analyzed to identify cultural models supporting monolingualism implicit in everyday conversation. Third, a Chronicle of Higher Education colloquy forum is analyzed to explore whether scholars and teachers who draw on communication and linguistic research overcome the ideological biases identified in earlier chapters. My analysis indicates that a persistent ideological bias plays out in these data sites, despite explicit claims by invested speakers to the contrary. This bias is a key reason why monolingualism remains so tenaciously a part of educational practice. Because irrational expectations and derogatory assumptions have gone unchallenged, little progress has been made despite decades of earnest work and good intentions. Therefore, my recommendations focus on what we say not what we intend.
Resumo:
We report on our experiences with the Spy project, including implementation details and benchmark results. Spy is a re-implementation of the Squeak (i.e., Smalltalk-80) VM using the PyPy toolchain. The PyPy project allows code written in RPython, a subset of Python, to be translated to a multitude of different backends and architectures. During the translation, many aspects of the implementation can be independently tuned, such as the garbage collection algorithm or threading implementation. In this way, a whole host of interpreters can be derived from one abstract interpreter definition. Spy aims to bring these benefits to Squeak, allowing for greater portability and, eventually, improved performance. The current Spy codebase is able to run a small set of benchmarks that demonstrate performance superior to many similar Smalltalk VMs, but which still run slower than in Squeak itself. Spy was built from scratch over the course of a week during a joint Squeak-PyPy Sprint in Bern last autumn.
Resumo:
We validate, extend, and empirically and theoretically criticize the cultural dimension of humane orientation of the project GLOBE (Global Leadership and Organizational Behavior Effectiveness Research Program). Theoretically, humane orientation is not just a one-dimensionally positive concept about being caring, altruistic, and kind to others as discussed by Kabasakal and Bodur (2004), but there is also a certain ambivalence to this concept. We suggest differentiating humane orientation toward in-group members from humane orientation toward out-group members. A multicountry construct validation study used student samples from 25 countries that were either high or low in humane orientation (N = 876) and studied their relation to the traditional GLOBE scale and other cultural-level measures (agreeableness, religiosity, authoritarianism, and welfare state score). Findings revealed a strong correlation between humane orientation and agreeableness, welfare state score, and religiosity. Out-group humane orientation proved to be the more relevant subfacet of the original humane orientation construct, suggesting that future research on humane orientation should make use of this measure instead of the vague original scale. The ambivalent character of out-group humane orientation is displayed in its positive correlation to high authoritarianism. Patriotism was used as a control variable for noncritical acceptance of one’s society but did not change the correlations. Our findings are discussed as an example of how rigid expectations and a lack of tolerance for diversity may help explain the ambivalent nature of humane orientation
Resumo:
A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
Resumo:
Future anthropogenic emissions of CO2 and the resulting ocean acidification may have severe consequences for marine calcifying organisms and ecosystems. Marine calcifiers depositing calcitic hard parts that contain significant concentrations of magnesium, i.e. Mg-calcite, and calcifying organisms living in high latitude and/or cold-water environments are at immediate risk to ocean acidification and decreasing seawater carbonate saturation because they are currently immersed in seawater that is just slightly supersaturated with respect to the carbonate phases they secrete. Under the present rate of CO2 emissions, model calculations show that high latitude ocean waters could reach undersaturation with respect to aragonite in just a few decades. Thus, before this happens these waters will be undersaturated with respect to Mg-calcite minerals of higher solubility than that of aragonite. Similarly, tropical surface seawater could become undersaturated with respect to Mg-calcite minerals containing ?12 mole percent (mol%) MgCO3 during this century. As a result of these changes in surface seawater chemistry and further penetration of anthropogenic CO2 into the ocean interior, we suggest that (1) the magnesium content of calcitic hard parts will decrease in many ocean environments, (2) the relative proportion of calcifiers depositing stable carbonate minerals, such as calcite and low Mg-calcite, will increase and (3) the average magnesium content of carbonate sediments will decrease. Furthermore, the highest latitude and deepest depth at which cold-water corals and other calcifiers currently exist will move towards lower latitudes and shallower depth, respectively. These changes suggest that anthropogenic emissions of CO2 may be currently pushing the oceans towards an episode characteristic of a 'calcite sea.'
Resumo:
Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface-waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO2, forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition, glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N2 fixation rates detected in Trichodesmium cultured under high pCO2. This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates, enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO2 could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.
Resumo:
This paper presents de results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities
Resumo:
In this paper the main challenges associated with the migration process towards LTE, will be assessed. These challenges comprise, among others, the next key topics: Reliability, Availability Maintainability and Safety (RAMS) requirements, end to end Quality of Service (QoS) requirements, system performance in high speed scenarios, communication system deployment strategy, and system backward compatibility as well as the future system features for delivering railway services. The practical evaluation of the LTE system capabilities and performance in High Speed Railway (HSR) scenarios, require the development of an LTE demonstrator and an LTE system level simulator. Under this scope, the authors have developed an RF LTE demonstrator, as well as an LTE system level simulator, that will provide valuable information for the assessing of LTE performance and suitability in real HSR scenarios. This work is being developed under the framework of a research project to evaluate the feasibility of LTE to become the new railway communication system. The companies and universities involved in this project are: Technical University of Madrid (UPM), Alcatel Lucent Spain, ADIF (Spanish Railway Infrastructure Manager), Metro de Madrid, AT4 Wireless, the University of A Coruña (UDC) and University of Málaga (UMA).
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
This Master’s Research Paper investigates Olafur Eliasson’s The weather project as a case study for the dialogue between Gothic artistic principles and prominent elements of contemporary art. A product of a post-modern mindset, weakened historicity allows us to examine these connections anew; past, present, and future blur and artists (and viewers) have the whole of time from which to gain inspiration and meaning in works of art. I demonstrate similarities through theories on phenomenology; the spatiotemporal relationship between viewer and artwork; the convergence of art and science; and the communal, quasi-liminal experience of pilgrimage. I embrace Eliasson’s belief in the self-reflexive potential of art and the importance of the viewer’s own values, memories, and methods of seeing. This new interpretive layer will hopefully offer a richer experience for future participants of both Gothic cathedrals and environments produced by Studio Olafur Eliasson.
Resumo:
Comunicación presentada en CIDUI 2010, Congreso Internacional Docencia Universitaria e Innovación, Barcelona, 30 junio-2 julio 2010.