986 resultados para Talent Identification
Resumo:
Automatic spoken Language Identi¯cation (LID) is the process of identifying the language spoken within an utterance. The challenge that this task presents is that no prior information is available indicating the content of the utterance or the identity of the speaker. The trend of globalization and the pervasive popularity of the Internet will amplify the need for the capabilities spoken language identi¯ca- tion systems provide. A prominent application arises in call centers dealing with speakers speaking di®erent languages. Another important application is to index or search huge speech data archives and corpora that contain multiple languages. The aim of this research is to develop techniques targeted at producing a fast and more accurate automatic spoken LID system compared to the previous National Institute of Standards and Technology (NIST) Language Recognition Evaluation. Acoustic and phonetic speech information are targeted as the most suitable fea- tures for representing the characteristics of a language. To model the acoustic speech features a Gaussian Mixture Model based approach is employed. Pho- netic speech information is extracted using existing speech recognition technol- ogy. Various techniques to improve LID accuracy are also studied. One approach examined is the employment of Vocal Tract Length Normalization to reduce the speech variation caused by di®erent speakers. A linear data fusion technique is adopted to combine the various aspects of information extracted from speech. As a result of this research, a LID system was implemented and presented for evaluation in the 2003 Language Recognition Evaluation conducted by the NIST.
Resumo:
wenty-eight international scholars contribute 11 chapters on the key role of communication in intergroup relations. Following an introductory essay on intergroup theory and communication processes, the text focuses on specific intergroup contexts, examining communication within and between cultural, disability, age, sex and sexuality, and language groups. The remaining chapters explore the communicating of identity across communication contexts, including small group, organizational, mass, and Internet communications. The text is designed for scholars in the fields of communication and intergroup social psychology, and is also suited for use in upper- division undergraduate and introductory graduate courses in those areas. Annotation ©2004 Book News, Inc., Portland, OR
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
The use of artificial neural networks (ANNs) to identify and control induction machines is proposed. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics, and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Both systems are inherently adaptive as well as self-commissioning. The current controller is a completely general nonlinear controller which can be used together with any drive algorithm. Various advantages of these control schemes over conventional schemes are cited, and the combined speed and current control scheme is compared with the standard vector control scheme
Resumo:
This paper proposes the use of artificial neural networks (ANNs) to identify and control an induction machine. Two systems are presented: a system to adaptively control the stator currents via identification of the electrical dynamics; and a system to adaptively control the rotor speed via identification of the mechanical and current-fed system dynamics. Various advantages of these control schemes over other conventional schemes are cited and the performance of the combined speed and current control scheme is compared with that of the standard vector control scheme
Resumo:
Identifying crash “hotspots”, “blackspots”, “sites with promise”, or “high risk” locations is standard practice in departments of transportation throughout the US. The literature is replete with the development and discussion of statistical methods for hotspot identification (HSID). Theoretical derivations and empirical studies have been used to weigh the benefits of various HSID methods; however, a small number of studies have used controlled experiments to systematically assess various methods. Using experimentally derived simulated data—which are argued to be superior to empirical data, three hot spot identification methods observed in practice are evaluated: simple ranking, confidence interval, and Empirical Bayes. Using simulated data, sites with promise are known a priori, in contrast to empirical data where high risk sites are not known for certain. To conduct the evaluation, properties of observed crash data are used to generate simulated crash frequency distributions at hypothetical sites. A variety of factors is manipulated to simulate a host of ‘real world’ conditions. Various levels of confidence are explored, and false positives (identifying a safe site as high risk) and false negatives (identifying a high risk site as safe) are compared across methods. Finally, the effects of crash history duration in the three HSID approaches are assessed. The results illustrate that the Empirical Bayes technique significantly outperforms ranking and confidence interval techniques (with certain caveats). As found by others, false positives and negatives are inversely related. Three years of crash history appears, in general, to provide an appropriate crash history duration.
Resumo:
Research investigating the transactional approach to the work stressor-employee adjustment relationship has described many negative main effects between perceived stressors in the workplace and employee outcomes. A considerable amount of literature, theoretical and empirical, also describes potential moderators of this relationship. Organizational identification has been established as a significant predictor of employee job-related attitudes. To date, research has neglected investigation of the potential moderating effect of organizational identification in the work stressor-employee adjustment relationship. On the basis of identity, subjective fit and sense of belonging literature it was predicted that higher perceptions of identification at multiple levels of the organization would mitigate the negative effect of work stressors on employee adjustment. It was expected, further, that more proximal, lower order identifications would be more prevalent and potent as buffers of stressors on strain. Predictions were tested with an employee sample from five organizations (N = 267). Hierarchical moderated multiple regression analyses revealed some support for the stress-buffering effects of identification in the prediction of job satisfaction and organizational commitment, particularly for more proximal (i.e., work unit) identification. These positive stress-buffering effects, however, were present for low identifiers in some situations. The present study represents an extension of the application of organizational identity theory by identifying the effects of organizational and workgroup identification on employee outcomes in the nonprofit context. Our findings will contribute to a better understanding of the dynamics in nonprofit organizations and therefore contribute to the development of strategy and interventions to deal with identity-based issues in nonprofits.
Resumo:
Climate change is becoming increasingly apparent that is largely caused by human activities such as asset management processes, from planning to disposal, of property and infrastructure. One essential component of asset management process is asset identification. The aims of the study are to identify the information needed in asset identification and inventory as one of public asset management process in addressing the climate change issue; and to examine its deliverability in developing countries’ local governments. In order to achieve its aims, this study employs a case study in Indonesia. This study only discusses one medium size provincial government in Indonesia. The information is gathered through interviews of the local government representatives in South Sulawesi Province, Indonesia and document analysis provided by interview participants. The study found that for local government, improving the system in managing their assets is one of emerging biggest challenge. Having the right information in the right place and at the right time are critical factors in response to this challenge. Therefore, asset identification as the frontline step in public asset management system is holding an important and critical role. Furthermore, an asset identification system should be developed to support the mainstream of adaptation to climate change vulnerability and to help local government officers to be environmentally sensitive. Finally, findings from this study provide useful input for the policy makers, scholars and asset management practitioners to develop an asset inventory system as a part of public asset management process in addressing the climate change.