769 resultados para TRIPLET-TRIPLET ANNIHILATION


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is associated with expansion of CTG repeats in the 3′-untranslated region of the myotonin protein kinase (DMPK) gene. The molecular mechanism whereby expansion of the (CUG)n repeats in the 3′-untranslated region of DMPK gene induces DM is unknown. We previously isolated a protein with specific binding to CUG repeat sequences (CUG-BP/hNab50) that possibly plays a role in mRNA processing and/or transport. Here we present evidence that the phosphorylation status and intracellular distribution of the RNA CUG-binding protein, identical to hNab50 protein (CUG-BP/hNab50), are altered in homozygous DM patient and that CUG-BP/hNab50 is a substrate for DMPK both in vivo and in vitro. Data from two biological systems with reduced levels of DMPK, homozygous DM patient and DMPK knockout mice, show that DMPK regulates both phosphorylation and intracellular localization of the CUG-BP/hNab50 protein. Decreased levels of DMPK observed in DM patients and DMPK knockout mice led to the elevation of the hypophosphorylated form of CUG-BP/hNab50. Nuclear concentration of the hypophosphorylated CUG-BP/hNab50 isoform is increased in DMPK knockout mice and in homozygous DM patient. DMPK also interacts with and phosphorylates CUG-BP/hNab50 protein in vitro. DMPK-mediated phosphorylation of CUG-BP/hNab50 results in dramatic reduction of the CUG-BP2, hypophosphorylated isoform, accumulation of which was observed in the nuclei of DMPK knockout mice. These data suggest a feedback mechanism whereby decreased levels of DMPK could alter phosphorylation status of CUG-BP/hNab50, thus facilitating nuclear localization of CUG-BP/hNab50. Our results suggest that DM pathophysiology could be, in part, a result of sequestration of CUG-BP/hNab50 and, in part, of lowered DMPK levels, which, in turn, affect processing and transport of specific subclass of mRNAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurately identifying accessible sites in RNA is a critical prerequisite for optimising the cleavage efficiency of hammerhead ribozymes and other small nucleozymes. Here we describe a simple RNase H-based procedure to rapidly identify hammerhead ribozyme-accessible sites in gene length RNAs. Twelve semi-randomised RNA–DNA–RNA chimeric oligonucleotide probes, known as ‘gapmers’, were used to direct RNase H cleavage of transcripts with the specificity expected for hammerhead ribozymes, i.e. after NUH sites (where H is A, C or U). Cleavage sites were identified simply by the mobility of RNase H cleavage products relative to RNA markers in denaturing polyacrylamide gels. Sites were identified in transcripts encoding human interleukin-2 and platelet-derived growth factor. Thirteen minimised hammerhead ribozymes, miniribozymes (Mrz), were synthesised and in vitro cleavage efficiency (37°C, pH 7.6 and 1 mM MgCl2) at each site was analysed. Of the 13 Mrz, five were highly effective, demonstrating good initial rate constants and extents of cleavage. The speed and accuracy of this method commends its use in screening for hammerhead-accessible sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long CTG triplet repeats which are associated with several human hereditary neuromuscular disease genes are stabilized in ColE1-derived plasmids in Escherichia coli containing mutations in the methyl-directed mismatch repair genes (mutS, mutL, or mutH). When plasmids containing (CTG)180 were grown for about 100 generations in mutS, mutL, or mutH strains, 60-85% of the plasmids contained a full-length repeat, whereas in the parent strain only about 20% of the plasmids contained the full-length repeat. The deletions occur only in the (CTG)180 insert, not in DNA flanking the repeat. While many products of the deletions are heterogeneous in length, preferential deletion products of about 140, 100, 60, and 20 repeats were observed. We propose that the E. coli mismatch repair proteins recognize three-base loops formed during replication and then generate long single-stranded gaps where stable hairpin structures may form which can be bypassed by DNA polymerase during the resynthesis of duplex DNA. Similar studies were conducted with plasmids containing CGG repeats; no stabilization of these triplets was found in the mismatch repair mutants. Since prokaryotic and human mismatch repair proteins are similar, and since several carcinoma cell lines which are defective in mismatch repair show instability of simple DNA microsatellites, these mechanistic investigations in a bacterial cell may provide insights into the molecular basis for some human genetic diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to predict macromolecular conformations from sequence and thermodynamic principles has long been coveted but generally has not been achieved. We show that differences in the hydration of DNA surfaces can be used to distinguish between sequences that form A- and B-DNA. From this, a "triplet code" of A-DNA propensities was derived as energetic rules for predicting A-DNA formation. This code correctly predicted > 90% of A- and B-DNA sequences in crystals and correlates with A-DNA formation in solution. Thus, with our previous studies on Z-DNA, we now have a single method to predict the relative stability of sequences in the three standard DNA duplex conformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myotonic dystrophy is caused by an expansion of a CTG triplet repeat sequence in the 3' noncoding region of a protein kinase gene, yet the mechanism by which the triplet repeat expansion causes disease remains unknown. This report demonstrates that a DNase I hypersensitive site is positioned 3' of the triplet repeat in the wild-type allele in both fibroblasts and skeletal muscle cells. In three unrelated individuals with myotonic dystrophy that have large expansions of the triplet repeat, the allele with the triplet repeat expansion exhibited both overall DNase I resistance and inaccessibility of nucleases to the adjacent hypersensitive site. These results indicate that the triplet repeat expansion alters the adjacent chromatin structure, establishing a region of condensed chromatin, and suggests a molecular mechanism for myotonic dystrophy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inordinate expansion and hypermethylation of the fragile X DNA triplet repeat, (GGC)n.(GCC)n, are correlated with the ability of the individual G- and C-rich single strands to form hairpin structures. Two-dimensional NMR and gel electrophoresis studies show that both the G- and C-rich single strands form hairpins under physiological conditions. This propensity of hairpin formation is more pronounced for the C-rich strand than for the G-rich strand. This observation suggests that the C-rich strand is more likely to form hairpin or "slippage" structure and show asymmetric strand expansion during replication. NMR data also show that the hairpins formed by the C-rich strands fold in such a way that the cytosine at the CpG step of the stem is C.C paired. The presence of a C.C mismatch at the CpG site generates local flexibility, thereby providing analogs of the transition to the methyltransferase. In other words, the hairpins of the C-rich strand act as better substrates for the human methyltransferase than the Watson-Crick duplex or the G-rich strand. Therefore, hairpin formation could account for the specific methylation of the CpG island in the fragile X repeat that occurs during inactivation of the FMR1 gene during the onset of the disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive gap equations for superconductivity in coexistence with ferromagnetism. We treat singlet and triplet states With either equal spin pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of these states as a function of exchange splitting. For the s-wave singlet state we find that our gap equations correctly reproduce the Clogston-Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger-Sarma equation (excluding the FFLO region). The singlet superconducting order parameter is shown to be independent of exchange splitting at zero temperature, as is assumed in the derivation of the Clogston-Chandrasekhar limit. P-wave triplet states of the OSP type behave similarly to the singlet state as a function of exchange splitting. On the other hand, ESP triplet states show a very different behaviour. In particular, there is no Clogston-Chandrasekhar limiting and the superconducting critical temperature, T-C, is actually increased by exchange splitting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Monozygotic monochorionic triplet pregnancy with conjoined twins is a very rare condition and is associated with many complications. Case: In this study, we describe a monochorionic–diamniotic triplet pregnancy after in vitro fertilization with an intracytoplasmic sperm injection. At a gestational age of 6 weeks and 4 days of pregnancy one gestational sac was observed, and at a gestational age of 12 weeks and 2 days, triplets with conjoined twins were diagnosed. After consulting with the parents, they chose fetal reduction of the conjoined twins. Selective feticide was successfully performed by radiofrequency ablation at 16 weeks of pregnancy. Unfortunately, the day after the procedure, the membrane ruptured, and 1 week later, all fetuses and placenta were spontaneously aborted. Conclusion: Monochorionic triplet pregnancy with conjoined twins is very rare. These pregnancies are associated with very serious complications. Intra cytoplasmic sperm injection increases the rate of monozygotic twinning and conjoined twins. Counseling with parents before IVF is very important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many senses, the hydrogen-atom transfer reactions observed with the triplet excited state of pyrophosphito-bridged platinum(II) dimers resemble the reactions of organic ketone nπ* states. The first two chapters describe our attempts to understand the reactivity differences between these two chromophores. Reactivity of the metal dimers is strongly regulated by the detailed nature of the ligands that ring the axial site, the hydrogen-abstraction center. A hydrogen-bonded network linking the ligands facilitates H-atom transfer quenching with alcohols through the formation of a hydrogen-bonded complex between the alcohol and a dimer. For substrates of equal C-H bond strength that lack a hydroxyl group (e.g., benzyl hydrocarbons), the quenching rate is several orders of magnitude slower.

The shape and size of the axial site, as determined by the ligands, also discriminate among quenchers by their steric characteristics. Very small quenchers quench slowly because of high entropies of activation, while very large ones have large enthalpic barriers. The two effects find a balance with quenchers of "just the right size."

The third chapter discusses the design of a mass spectrometer that uses positron annihilation to ionize neutral molecules. The mass spectrometer creates positron-molecule adducts whose annihilation produces fragmentation products that may yield information on the bonding of positrons in such complexes.