999 resultados para TRIPLET-STATE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some novel binary and ternary complexes of rare earth ions (Gd, Eu, Tb) with N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were synthesized by homogenous precipitation and characterized by elemental analysis, IR spectra, UV/Vis spectra, and thermal analysis. The phosphorescence spectra and lifetimes of gadolinium complexes were measured, and the triplet state energies of N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline as well as the energy transfer efficiencies between N-phenyl-2-aminobenzoic acid and 1,10-phenanthroline were determined. The photophysical properties such as luminescence and intramolecular energy transfer between the rare earth center ions and the ligands and between ligands are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of rare earth (Gd, Eu, Tb) complexes with different substituent group carboxylic acids (ortho-hydroxylbenzioc acid, ortho-aminobenzoic acid and ortho-methoxy benzoic acid) and 1,10-phenanthroline were synthesized. The spectroscopic studies of the photophysical properties such as luminescence properties, energy match and intramolecular energy transfer were carried out. The lowest triplet state energies of ligands and the intramolecular energy transfer efficiencies were determined with the measurement of low phosphorescence spectra and lifetimes of Gd complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes end the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+ and Tb3+ complexes were discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thirteen kinds of binary and ternary complexes of rare earth (Gd, Eu,Tb) with ortho (para) aminobenzoic acid and 1.10--phenanthroline were synthesized and characterized. The phosphorescence spectra and lifetimes of gadolinium complexes were measured and the lowest triplet state energies of ligands and the energy transfer efficiencies between ligands were determined. The luminescence properties and intramolecular energy transfer of these complexes were studied in details.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

De-excited dynamics of p-chlorotoluene and p-dichlorobenzene have been investigated by the femtosecond pump-probe method in a supersonic molecular beam. The yields of the parent ion and daughter ion are examined as a function of the delay time between the pump and probe laser pulses. The lifetime constants of excited p-chlorotoluene and p-dichlorobenzene are determined. Possible de-excitation mechanisms are suggested that the initially excited S-1 state is predissociative via the repulsive triplet state. The substituent effects of additional chlorine atom and methyl group are discussed. Moreover, for the first time, we observe a novel quantum beat oscillation in p-dichlorobenzene. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phosphorescence excitation spectra of two thiones, 4-H-1-xanthione (XT) and 4-H-1-pyrane-4-thione (PT), cooled in a supersonic jet were investigated. The vibronic lineshape of the T1z origin of PT measured by cavity ring-down spectroscopy is considered and the excited state rotational constants are calculated. For XT the 3A2(nπ* ) → X1A1 phosphorescence excitation spectrum was investigated in the region 14900-17600 cm-1. The structure observed is shown to be due to the T1← S0 absorption and an assignment in terms of the vibronic structure of the band is proposed. A previous assignment of the S1 ← S0 origin is considered and the transition involved is shown to be most probably due to the absorption of a vibronic tiplet state T1z,v7. An alternative but tentative assignment of the S1,0 ←S0,0 transition is suggested. In the case of PT the phosphorescence excitation spectrum was investigated in the region of the 1A2(ππ*) ← X1A1 absorption band between 27300 and 28800 cm-1. The spectrum exhibits complex features which are typical for the strong vibronic coupling case of two adjacent electronic states. The observed intermediate level structure was attributed to the coupling with a lower lying dark electronic state 1B1(nπ*2), whose origin was estimated to be ~ 825 - 1025 cm-1 below the origin of 1A2(ππ*)0. Consequences of the vibronic coupling on the decay dynamics of 1A2(ππ*) as well as tentative assignments of vibronic transitions 1A2(ππ*)v ← X1A1 are also discussed. In the T1z ← S0 cavity ring-down absorption spectrum of PT, the vibronic lineshape of the T1z origin is analysed. As the T1z line is separated from the T1x,1y lines by a large zero-field splitting it is possible to use an Asyrot-like program to calculate the vibrational-rotational parameters determining the lineshape. It is shown that PT is non-planar in the first excited triplet state and the lineshape is composed of a mixture of A-type and C-type bandshapes. The non-planarity of PT is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

leuco-Methylene Blue has a previously unrecognized, very reactive, UV-driven triplet state photochemistry and, in particular, undergoes photo-oxidative quenching with dissolved oxygen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is considerable interest in intramolecular energy transfer, especially in complexes which absorb visible light, because it is crucial to the better understanding of photoharvesting systems in photosynthetic organisms and for utilizing solar energy as well. Porphyrin dimers represent one of the best systems for the exploration of light-induced intramolecular energy transfer. Many kinds of porphyrins and porphyrin dimers have been studied over the past decade, however little attention has been paid to the influence of paramagnetic metals on the behavior of their excited states. In this thesis, Electron Paramagnetic Resonance Spectroscopy (EPR) is used to study such compounds. After light irradiation, porphyrins easily produce a variety of excited states, which are spin polarized and can be detected by the time-resolved (TR) EPR technique. The spin polarized results for vanadyl porphyrins, their electrostatically-coupled dimers, a covalently-linked copper porphyrin-free base porphyrin dimer, and free base porphyrins are presented in this thesis. From these results we can conclude that the spin polarization patterns of vanadyl porphyrins come primarily from the trip-quartet state generated by intersystem crossing (lSC) from the excited sing-doublet state through the trip-doublet state. The spin polarization pattern of electrostatically-coupled vanadyl porphyrin-free base porphyrin dimer is produced by the triplet state of the free base porphyrin half which is coupled to the unpaired electron on the vanadyl ion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Une série de dimères composés de thiophène-aniline encombrée stériquement a été synthétisée. Les différents processus de désactivation de l’état singulet excité ont été étudiés par UV-visible, fluorescence, phosphorescence, photolyse par impulsion laser et calculs théoriques. Les graphiques de Stern-Volmer obtenus à partir des expériences de désactivation des états singulet et triplet ont démontré l’efficacité de l’azométhine à désactiver les fluorophores. Les calculs semi-empiriques AM1 examinant l’effet des substituants encombrés ont démontrés que les groupements tert-butyls sur l’aniline ont moins d’influence sur la barrière de rotation N-aryl que les substitutions alkyles en ont sur la rotation de thiophène-C. Les calculs Rehm-Weller basés sur les potentiels d’oxydation et de réduction ont montré que l’autodésactivation de l’état excité des azométhines se fait par transfert d’électron photoinduit menant à une éradication complète de la fluorescence. Des complexes métalliques contenant des ligands azométhines ont aussi été préparés. Le ligand est composé d’une unité hydroxyquinoline lié à un cycle thiophène. Les données photophysiques de ces complexes indiquent un déplacement bathochromique aussi bien en absorbance qu’en fluorescence. Des dispositifs de détection d’ion métallique ont été préparés et un exemple à partir d’une solution de cuivre a montré un déplacement bathochromique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les propriétés intrinsèques, photophysiques, électrochimiques et cristallographiques des molécules fluorescentes 4,4'-bis(2-benzoxazolyle)stilbène (BBS) et 2,5-bis(5-tert-butyl-2-benzoxazolyle)thiophène (BBT) ont été étudiées en solution et dans les polymères semi-cristallins : poly(butylène succinate) (PBS) et polylactide (PLA). Les deux fluorophores sont caractérisés par de hauts rendements quantiques absolus de fluorescence. Toutefois, une désactivation de la fluorescence peut se produire par croisement intersystème vers l'état triplet pour le BBT, et par photoisomérisation trans-cis pour le BBS. La cinétique de ce dernier processus dépend de la concentration, résultant en un pur isomère cis photo-induit à faibles concentrations, qui est accompagné à des concentrations élevées par l'apparition d'un composé acide après photo-clivage suivi d'une oxydation. Cette étude a révélé des changements spectroscopiques prononcés suite à l’augmentation de la concentration des fluorophores, en particulier à l'état solide, spécifiques à l'agrégation des molécules à l'état fondamental pour le BBT et à la formation d’excimères pour le BBS, permettant ainsi de corréler les propriétés fluorescentes avec les caractéristiques du monocristal pour chaque fluorophore. En outre, le passage d’une dispersion moléculaire à une séparation de phases dans le cas du BBS est accompagné d'un changement de couleur du bleu au vert, qui est sensible à la déformation, à la température et au temps, affectant les rendements quantiques absolus de fluorescence et fournissant une large opportunité à la création d'une grande variété de polymères intelligents indicateurs capables d'auto-évaluation. D’autre part, la solubilité élevée du BBT dans les solvants courants, combinée à ses propriétés optoélectroniques élevées, en font un candidat en tant que référence universelle de fluorescence et matériau intelligent à la fois pour les études de polymères et en solution. Similairement aux mélanges comprenant des polymères miscibles, l'orientation du PBS augmente après ajout d'une molécule fluorescente, dont les monomères ont tendance à être orientés dans des films étirés, contrairement aux excimères ou agrégats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical limiting and thermal lensing studies are carried out in C70–toluene solutions. The measurements are performed using 9-ns pulses generated from a frequencydoubled Nd:YAG laser at 532 nm. Optical limiting studies in fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting. Analysis of thermal lensing measurements showed a quadratic dependence of thermal lens signal on incident laser energy, which also supports the view that optical limiting in C70 arises due to sequential two-photon absorption via excited triplet state (reverse saturable absorption).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical limiting and thermo-optic properties of C60 in toluene are studied using 532 nm, 9 ns pulses from a frequency-doubled Nd:YAG laser. Optical limiting studies in these fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting properties in these molecules. Thermal lensing measurements are also performed in fullerene solutions. The quadratic dependence of thermal lens signal on incident energy confirms that enhanced optical absorption by the sample via excited triplet state absorption may play a leading role in the limiting property.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.