333 resultados para TRANSPIRATION
Resumo:
The objective of this work was to determine the effect of climatic seasonality on physic nut (Jatropha curcas), in field, under semiarid climate conditions. Stomatal conductance (g s), transpiration (E), soluble leaf carbohydrates (SLC), free amino acids (FAA) and total proteins (TP) were measured in leaves, in a commercial plantation in Northeast Brazil, during the summer and autumn. Plants showed high g s and E, as well as SLC, FAA and TP contents in the summer, which gradually decreased with the lower temperatures and photosynthetically active radiation during the autumn, despite the higher water availability. Even in conditions of adequate water availability, the combination of low temperatures and reduced light drastically decreased foliar metabolism.
Resumo:
The objective of this work was to evaluate the effects of UV-B radiation on the vegetative growth and on the gas exchange characteristics of passion fruit plants (Passiflora edulis) grown in greenhouse. The average unweighted UV-B radiation near the apex of the plants was 8 W m-2 for the UV-B treatment (high UV-B), and 0.8 W m-2 for the control plants (low UV-B). Plants were irradiated with UV-B for 7 hours per day, centered on solar noon, during 16 days. High UV-B radiation resulted in lower shoot dry matter accumulation per plant. The content of UV-B absorbing compounds and anthocyanins was increased in the plants exposed to high UV-B radiation, when compared with the control. UV-B radiation did not affect stomatal conductance or transpiration rate, but reduced photosynthesis and instantaneous water-use efficiency, and increased intercellular CO2 concentration. The accumulation of UV-B-absorbing compounds and anthocyanins did not effectively shield plants from supplementary UV-B radiation, since the growth and photosynthetic processes were significantly reduced.
Resumo:
The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol), besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.
Resumo:
A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.
Resumo:
The water consumption and the crop coefficient of the banana cv. Pacovan were estimated in Petrolina County, northeastern Brazil, in order to establish guidelines to irrigation water management. Evaluations were carried out since planting in January 1999 to the 3rd harvest in September 2001 on a microsprinkler irrigated orchard, with plants spaced in a 3 x 3 m grid. Average daily water consumption was 3.9, 4.0, and 3.3 mm in the 1st, 2nd and 3rd growing seasons, respectively. Crop coefficient values increased from 0.7 (vegetative growth) to 1.1 (flowering). Even with high soil water availability, transpiration was reduced due to high evaporative demand.
Resumo:
The relationship between yield, carbon isotope discrimination and ash content in mature kernels was examined for a set of 13 barley (Hordeum vulgare) cultivars. Plants were grown under rainfed and well-irrigated conditions in a Mediterranean area. Water deficit caused a decrease in both grain yield and carbon isotope discrimination (Δ). The yield was positively related to Δ and negatively related to ash content, across genotypes within each treatment. However, whereas the correlation between yield and Δ was higher for the set of genotypes under well-irrigated (r=0.70, P<0.01) than under rainfed (r=0.42) conditions, the opposite occurred when yield and ash content were related, ie r=-0.38 under well-irrigated and r=-0.73, (P<0.01) under rainfed conditions. Carbon isotope discrimination and ash content together account for almost 60% of the variation in yield, in both conditions. There was no significant relationship (r=-0.15) between carbon isotope discrimination and ash content in well-irrigated plants, whereas in rainfed plants, this relationship, although significant (r=-0.54, P< 0.05), was weakly negative. The concentration of several mineral elements was measured in the same kernels. The mineral that correlated best with ash content, yield and A, was K. For yield and Δ, although the relationship with K followed the same pattern as the relationhip with ash content, the correlation coefficients were lower. Thus, mineral accumulation in mature kernels seems to be independent of transpiration efficiency. In fact, filling of grains takes place through the phloem pathway. The ash content in kernels is proposed as a complementary criterion, in addition to kernel Δ, to assess genotype differences in barley grain yield under rainfed conditions.
Resumo:
The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.
Resumo:
Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L.) Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck) was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.
Resumo:
The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1), the leaf temperature (Tleaf, ºC), the CO2 assimilation (A, μmol m-2 s-1), the stomatal conductance (g s, mol m-2 s-1), the transpiration (E, mmol m-2 s-1) and the intercellular CO2 concentration (Ci, μmol mol-1) were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.). A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99), indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.
Resumo:
"Araticum-de-terra-fria" (Annona emarginata (Schltdl.) H. Rainer) has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I) of the complete nutrient solution Hoagland and Arnon (1950) nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency); Vegetative growth characteristics (diameter, leaf number, dry matter); Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio) and Ionic Accumulation (nutrients leaf analysis). Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950) nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.
Resumo:
Water uptake and use by plants are essentially energy processes that can be largely modified by percentage of soil cover, plant type; foliage area and its distribution; phenological stage and several environmental factors. Coffee trees (Coffea arabica - cv. Obatã IAC 1669-20) in Agrforestry System (AFS) spaced 3.4x0.9m apart, were planted inside and along rows of 12- year-old rubber trees (Hevea spp.) in Piracicaba-SP, Brazil (22 42'30" S, 47 38'00" W - altitude: 546m). Sap flow of one-year-old coffee plants exposed to 35; 45; 80; 95 and 100% of total solar radiation was estimated by the heat balance technique (Dynamax Inc.). Coffee plants under shade showed greater water loss per unit of incident irradiance. On the other hand, plants in monocrop (full sun) had the least water loss per unit of incident irradiance. For the evaluated positions average water use was (gH2O.m-2Leaf area.MJ-1): 64.71; 67.75; 25.89; 33.54; 27.11 in Dec./2002 and 97.14; 72.50; 40.70; 32.78; 26.13 in Feb./2003. This fact may be attributed to the higher stomata sensitivity of the coffee plants under more illuminated conditions, thus plants under full sun presented the highest water use efficiency. Express transpiration by leaf mass can be a means to access plant adaptation to the various environments, which is inaccessible when the approach is made by leaf area.
Resumo:
ABSTRACT The Paratudo (Tabebuia aurea) is a species occurring in the Pantanal of Miranda, Mato Grosso do Sul, Brazil, an area characterized by seasonal flooding. To evaluate the tolerance of this plant to flooding, plants aged four months were grown in flooded soil and in non-flooded soil (control group). Stomatal conductance, transpiration and CO2 assimilation were measured during the stress (48 days) and recovery (11 days) period, totalling 59 days. The values of stomatal conductance of the control group and stressed plants at the beginning of the flooded were 0.33 mol m-2s-1 and reached 0.02 mol m-2 s-1 (46th day) at the end of this event. For the transpiration parameter, the initial rate was 3.1 mol m s-1, and the final rate reached 0.2 or 0.3 mol m-2 s-1 (47/48 th day). The initial photosynthesis rate was 8.9 mmol m-2s-1 and oscillated after the sixth day, and the rate reached zero on the 48th day. When the photosynthesis rate reached zero, the potted plants were dried, and the rate was analyzed (11th day). The following values were obtained for dried plants: stomatal conductance = 0.26 mol m-2 s-1, transpiration rate = 2.5 mol m-2 s-1 and photosynthesis rate = 7.8 mmol m-2 s-1. Flooded soil reduced photosynthesis and stomatal conductance, leading to the hypertrophy of the lenticels. These parameters recovered and after this period, and plants exhibited tolerance to flooding stress by reducing their physiological activities.
Resumo:
The numerous methods for calculating the potential or reference evapotranspiration (ETo or ETP) almost always do for a 24-hour period, including values of climatic parameters throughout the nocturnal period (daily averages). These results have a nil effect on transpiration, constituting the main evaporative demand process in cases of localized irrigation. The aim of the current manuscript was to come up with a model rather simplified for the calculation of diurnal daily ETo. It deals with an alternative approach based on the theoretical background of the Penman method without having to consider values of aerodynamic conductance of latent and sensible heat fluxes, as well as data of wind speed and relative humidity of the air. The comparison between the diurnal values of ETo measured in weighing lysimeters with elevated precision and estimated by either the Penman-Monteith method or the Simplified-Penman approach in study also points out a fairly consistent agreement among the potential demand calculation criteria. The Simplified-Penman approach was a feasible alternative to estimate ETo under the local meteorological conditions of two field trials. With the availability of the input data required, such a method could be employed in other climatic regions for scheduling irrigation.
Resumo:
Maize is a C4 plant that shows few or no response to high [CO2]. Thus, this study aimed to analyze the photosynthetic rate and yield of maize under high [CO2] and develop open-top chambers (OTC) to create an atmosphere enriched with CO2. The experiment was conducted between October 2008 and March 2009. The OTCs were developed in modular scheme. Measurement of photosynthetic rates, transpiration, stomata conductance, grain yield and dry matter were performed. The experimental design was randomized blocks with four replications and three treatments: P1 - plants grown in OTC with 700 ppm [CO2], P2 - plants grown in OTC with environmental [CO2], and P3 - control, cultivated in open field. The results were analyzed by ANOVA and Tukey's test (Pr< 0.05). The chambers can reduce by 25% the photosynthetically active radiation and increase the air and leaf temperatures. Plants under high [CO2] (P1) showed the highest photosynthetic rates and the lowest stomata conductance and transpiration. The total weight of grains (g) and dry mass of shoots (g) showed no increases for P1, despite their higher photosynthetic rates.
Resumo:
Evapotranspiration is the process of water loss of vegetated soil due to evaporation and transpiration, and it may be estimated by various empirical methods. This study had the objective to carry out the evaluation of the performance of the following methods: Blaney-Criddle, Jensen-Haise, Linacre, Solar Radiation, Hargreaves-Samani, Makkink, Thornthwaite, Camargo, Priestley-Taylor and Original Penman in the estimation of the potential evapotranspiration when compared to the Penman-Monteith standard method (FAO56) to the climatic conditions of Uberaba, state of Minas Gerais, Brazil. A set of 21 years monthly data (1990 to 2010) was used, working with the climatic elements: temperature, relative humidity, wind speed and insolation. The empirical methods to estimate reference evapotranspiration were compared with the standard method using linear regression, simple statistical analysis, Willmott agreement index (d) and performance index (c). The methods Makkink and Camargo showed the best performance, with "c" values of 0.75 and 0.66, respectively. The Hargreaves-Samani method presented a better linear relation with the standard method, with a correlation coefficient (r) of 0.88.