481 resultados para TOLUENE DIISOCYANATE
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
The cleaning of syngas is one of the most important challenges in the development of technologies based on gasification of biomass. Tar is an undesired byproduct because, once condensed, it can cause fouling and plugging and damage the downstream equipment. Thermochemical methods for tar destruction, which include catalytic cracking and thermal cracking, are intrinsically attractive because they are energetically efficient and no movable parts are required nor byproducts are produced. The main difficulty with these methods is the tendency for tar to polymerize at high temperatures. An alternative to tar removal is the complete combustion of the syngas in a porous burner directly as it leaves the particle capture system. In this context, the main aim of this study is to evaluate the destruction of the tar present in the syngas from biomass gasification by combustion in porous media. A gas mixture was used to emulate the syngas, which included toluene as a tar surrogate. Initially, CHEMKIN was used to assess the potential of the proposed solution. The calculations revealed the complete destruction of the tar surrogate for a wide range of operating conditions and indicated that the most important reactions in the toluene conversion are C6H5CH3 + OH <-> C6H5CH2 + H2O, C6H5CH3 + OH <-> C6H4CH3 + H2O, and C6H5CH3 + O <-> OC6H4CH3 + H and that the formation of toluene can occur through C6H5CH2 + H <-> C6H5CH3. Subsequently, experimental tests were performed in a porous burner fired with pure methane and syngas for two equivalence ratios and three flow velocities. In these tests, the toluene concentration in the syngas varied from 50 to 200 g/Nm(3). In line with the CHEMKIN calculations, the results revealed that toluene was almost completely destroyed for all tested conditions and that the process did not affect the performance of the porous burner regarding the emissions of CO, hydrocarbons, and NOx.
Resumo:
A correlation and predictive scheme for the viscosity and self-diffusivity of liquid dialkyl adipates is presented. The scheme is based on the kinetic theory for dense hard-sphere fluids, applied to the van der Waals model of a liquid to predict the transport properties. A "universal" curve for a dimensionless viscosity of dialkyl adipates was obtained using recently published experimental viscosity and density data of compressed liquid dimethyl (DMA), dipropyl (DPA), and dibutyl (DBA) adipates. The experimental data are described by the correlation scheme with a root-mean-square deviation of +/- 0.34 %. The parameters describing the temperature dependence of the characteristic volume, V-0, and the roughness parameter, R-eta, for each adipate are well correlated with one single molecular parameter. Recently published experimental self-diffusion coefficients of the same set of liquid dialkyl adipates at atmospheric pressure were correlated using the characteristic volumes obtained from the viscosity data. The roughness factors, R-D, are well correlated with the same single molecular parameter found for viscosity. The root-mean-square deviation of the data from the correlation is less than 1.07 %. Tests are presented in order to assess the capability of the correlation scheme to estimate the viscosity of compressed liquid diethyl adipate (DEA) in a range of temperatures and pressures by comparison with literature data and of its self-diffusivity at atmospheric pressure in a range of temperatures. It is noteworthy that no data for DEA were used to build the correlation scheme. The deviations encountered between predicted and experimental data for the viscosity and self-diffusivity do not exceed 2.0 % and 2.2 %, respectively, which are commensurate with the estimated experimental measurement uncertainty, in both cases.
Resumo:
RESUMO Tratando-se a asma de uma doença respiratória, desde há várias décadas que tem sido abordada a hipótese de que factores ambientais, nomeadamente os relacionados com a qualidade do ar inalado, possam contribuir para o seu agravamento. Para além dos aeroalergenos, outros factores ambientais como a poluição atmosférica estarão associados às doenças respiratórias. O ar respirado contém uma variedade de poluentes atmosféricos, provenientes quer de fontes naturais quer de origem antropogénica, nomeadamente de actividades industriais, domésticas ou das emissões de veículos. Estes poluentes, tradicionalmente considerados como um problema de foro ambiental, têm sido cada vez mais encarados como um problema de saúde pública. Também a qualidade do ar interior, tem sido associada a queixas respiratórias, não só em termos ocupacionais mas também em exposições domésticas. Dentro dos principais poluentes, encontramos a matéria particulada (como as PM10), o O3, NO2, e os compostos orgânicos voláteis (COVs). Se é verdade que os três primeiros têm como principais fontes de exposição a combustão fóssil associada aos veículos automóveis, já os COVs (como o benzeno, tolueno, xileno, etilbenzeno e formaldeído) são poluentes mais característicos do ar interior. Os mecanismos fisiopatológicos subjacentes à agressão dos poluentes do ar não se encontram convenientemente esclarecidos. Pensa-se que após a sua inalação, induzam um grau crescente de stress oxidativo que será responsável pelo desenvolvimento da inflamação das vias aéreas. A progressão do stress oxidativo e da inflamação, associarse- ão posteriormente a lesão local (pulmonar) e sistémica. Neste trabalho pretendeu-se avaliar os efeitos da exposição individual a diversos poluentes, do ar exterior e interior, sobre as vias aéreas, recorrendo a parâmetros funcionais, inflamatórios e do estudo do stress oxidativo. Neste sentido, desenvolveu-se um estudo de painel na cidade de Viseu, em que foram acompanhadas durante 18 meses, 51 crianças com história de sibilância, identificadas pelo questionário do estudo ISAAC. As crianças foram avaliadas em quatro Visitas (quatro medidas repetidas), através de diversos exames, que incluíram execução de espirometria com broncodilatação, medição ambulatória do PEF, medição de FENO e estudo do pH no condensado brônquico do ar exalado. O estudo dos 8-isoprostanos no condensado brônquico foi efectuado somente em duas Visitas, e o do doseamento de malonaldeído urinário somente na última Visita. Para além da avaliação do grau de infestação de ácaros do pó do colchão, para cada criança foi calculado o valor de exposição individual a PM10, O3, NO2, benzeno, tolueno, xileno, etilbenzeno e formaldeído, através de uma complexa metodologia que envolveu técnicas de modelação associadas a medições directas do ar interior (na casa e escola da criança) e do ar exterior. Para a análise de dados foram utilizadas equações de estimação generalizadas com uma matriz de correlação de trabalho uniforme, com excepção do estudo das associações entre poluentes, 8-isoprostanos e malonaldeído. Verificou-se na análise multivariável a existência de uma associação entre o agravamento dos parâmetros espirométricos e a exposição aumentada a PM10, NO2, benzeno, tolueno e etilbenzeno. Foram também encontradas associações entre diminuição do pH do EBC e exposição crescente a PM10, NO2, benzeno e etilbenzeno e associações entre valores aumentados de FENO e exposição a etilbenzeno e tolueno. O benzeno, o tolueno e o etilbenzeno foram associados com maior recurso a broncodilatador nos 6 meses anteriores à Visita e o tolueno com deslocações ao serviço de urgência. Os resultados dos modelos de regressão que incluíram o efeito do poluente ajustado para o grau de infestação de ácaros do pó foram, de uma forma geral, idênticos ao da análise multivariável anterior, com excepção das associações para com o FENO. Nos modelos de exposição com dois poluentes, com o FEV1 como variável resposta, somente o benzeno persistiu com significado estatístico. No modelo com dois poluentes tendo o pH do EBC como variável resposta, somente persistiram as PM10. Os 8-isoprostanos correlacionaram-se com alguns COVs, designadamente etilbenzeno, xileno, tolueno e benzeno. Os valores de malonaldeído urinário não se correlacionaram com os valores de poluentes. Verificou-se no entanto que de uma forma geral, e em particular mais uma vez para os COVs, as crianças mais expostas a poluentes, apresentaram valores superiores de malonaldeído na urina. Verificou-se que os poluentes do ar em geral, e os COVs em particular, se associaram com uma deterioração das vias aéreas. A exposição crescente a poluentes associou-se não só com obstrução brônquica, mas também com FENO aumentado e maior acidez das vias aéreas. A exposição crescente a COVs correlacionou-se com um maior stress oxidativo das vias aéreas (medido pelos 8-isoprostanos). As crianças com exposição superior a COVs apresentaram maiores valores de malonaldeído urinário. Este trabalho sugere uma associação entre exposição a poluentes, inflamação das vias aéreas e stress oxidativo. Vem reforçar o interesse dos poluentes do ar, nomeadamente os associados a ambientes interiores, frequentemente esquecidos e que poderão ser explicativos do agravamento duma criança com sibilância.-----------ABSTRACT: Asthma is a chronic respiratory disease that could be influenced by environmental factors, as allergens and air pollutants. The air breathed contains a diversity of air pollutants, both from natural or anthropogenic sources. Atmospheric pollution, traditionally considered an environmental problem, is nowadays looked as an important public health problem. Indoor air pollutants are also related with respiratory diseases, not only in terms of occupational exposures but also in domestic activities. Particulate matter (such as PM10), O3, NO2 and volatile organic compounds (VOCs) are the main air pollutants. The main source for PM10, O3, NO2 exposure is traffic exhaust while for VOCs (such as benzene, toluene, xylene, ethylbenzene and phormaldehyde) the main sources for exposure are located in indoor environments. The pathophysiologic mechanisms underlying the aggression of air pollutants are not properly understood. It is thought that after inhalation, air pollutants could induce oxidative stress, which would be responsible for airways inflammation. The progression of oxidative stress and airways inflammation, would contribute for the local and systemic effects of the air pollutants. The present study aimed to evaluate the effects of individual exposure to various pollutants over the airways, through lung function tests, inflammatory and oxidative stress biomarkers. In this sense, we developed a panel study in the city of Viseu, that included 51 children with a history of wheezing. Those children that were identified by the ISAAC questionnaire, were followed for 18 months. Children were assessed four times (four repeated measures) through the following tests: spirometry with bronchodilation test, PEF study, FENO evaluation and exhaled breath condensate pH measurement. 8-isoprostane in the exhaled breath condensate were also measured but only in two visits. Urinary malonaldehyde measurement was performed only in the last visit. Besides the assessment of the house dust mite infestation, we calculated for each child the value of individual exposure to a wide range of pollutants: PM10, O3, NO2, benzene, toluene, xylene, ethyl benzene and formaldehyde. This strategy used a complex methodology that included air pollution modelling techniques and direct measurements indoors (homes and schools) and outdoors. Generalized estimating equations with an exchangeable working correlation matrix were used for the analysis of the data. Exceptions were for the study of associations between air pollutants, malonaldehyde and 8-isoprostanes. In the multivariate analysis we found an association between worsening of spirometric outcomes and increased exposure to PM10, NO2, benzene, toluene and ethylbenzene. In the multivariate analysis we found also negative associations between EBC pH and exposure to PM10, NO2, benzene, ethylbenzene and positive associations between FENO and exposure to ethylbenzene and toluene. Benzene, toluene and ethylbenzene were associated with increased use of bronchodilator in the 6 months prior to the visit and toluene with emergency department visits. Results of the regression models that included also the effect of the pollutant adjusted for the degree of infestation to house dust mites, were identical to the previous models. Exceptions were for FENO associations. In the two-pollutant models, with the FEV1 as dependent variable, only benzene persisted with statistical significance. In the two pollutant model with pH of EBC as dependent variable, only PM10 persisted. 8-isoprostanes were well correlated with some VOCs, namely with ethylbenzene, xylene, toluene and benzene. Urinary malonaldehyde did not present any correlation with air pollutants exposure. However, those children more exposed to air pollutants (namely to VOCs), presented higher values of malonaldehyde. It was found that air pollutants in general, and namely VOCs, were associated with deterioration of the airways. The increased exposure to air pollutants was associated not only with airways obstruction, but also with increased FENO and higher acidity of the airways. The increased exposure to VOCs was correlated with increased airways oxidative stress (measured by 8-isoprostane). Children with higher levels of exposure to VOCs had higher values of urinary malonaldehyde. This study suggests a relation between air pollution, airways inflammation and oxidative stress. It suggests also that attention should be dedicated to air quality as air pollutants could cause airways deterioration.
Resumo:
Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
This study utilised recent developments in forensic aromatic hydrocarbon fingerprint analysis to characterise and identify specific biogenic, pyrogenic and petrogenic contamination. The fingerprinting and data interpretation techniques discussed include the recognition of: The distribution patterns of hydrocarbons (alkylated naphthalene, phenanthrene, dibenzothiophene, fluorene, chrysene and phenol isomers), • Analysis of “source-specific marker” compounds (individual saturated hydrocarbons, including n-alkanes (n-C5 through 0-C40) • Selected benzene, toluene, ethylbenzene and xylene isomers (BTEX), • The recalcitrant isoprenoids; pristane and phytane and • The determination of diagnostic ratios of specific petroleum / non-petroleum constituents, and the application of various statistical and numerical analysis tools. An unknown sample from the Irish Environmental Protection Agency (EPA) for origin characterisation was subjected to analysis by gas chromatography utilising both flame ionisation and mass spectral detection techniques in comparison to known reference materials. The percentage of the individual Polycyclic Aromatic Hydrocarbons (PAIIs) and biomarker concentrations in the unknown sample were normalised to the sum of the analytes and the results were compared with the corresponding results with a range of reference materials. In addition, to the determination of conventional diagnostic PAH and biomarker ratios, a number of “source-specific markers” isomeric PAHs within the same alkylation levels were determined, and their relative abundance ratios were computed in order to definitively identify and differentiate the various sources. Statistical logarithmic star plots were generated from both sets of data to give a pictorial representation of the comparison between the unknown sample and reference products. The study successfully characterised the unknown sample as being contaminated with a “coal tar” and clearly demonstrates the future role of compound ratio analysis (CORAT) in the identification of possible source contaminants.
Resumo:
Occurrence of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was evaluated in sepiolite as a widely employed binder and anti-caking agent for animal feed. Also, naturally contaminated kaolinitic clay was used for comparative purposes. Since sepiolite shows remarkable adsorption properties, particular interest was paid to the extraction steps as they become critical for the final determination of these pollutants in such matrixes. Furthermore, classical Soxhlet extraction using different extracting strategies as well as acid treatment were carried out with simultaneous liquid-liquid extraction. Results obtained depended on the extraction procedure applied. Acid treatment or Soxhlet extraction using a mixture of toluene:ethanol as solvent allowed to reach the minimum requirements of recovery rates. However, Soxhlet extraction using a mixture cyclohexane:toluene as extracting solvent did not allow to comply with minimum specifications for recovery. Significant differences were obtained in TEQ units when acid treatment was applied in comparison to Soxhlet extraction. This fact can be explained because the use of drastic acid conditions allows removing strongly adsorbed analytes which can be uniquely extracted after a total destruction of the crystalline structure of sepiolite. On the contrary, Soxhlet extraction was not able to destroy the structure of sepiolite and as a consequence the PCDDs/Fs were strongly adsorbed in the internal structure of the mineral. From biological point of view the availability of these toxicants constitutes a critical aspect playing an important role in the final decision choosing particular analytical procedures. Then, acid conditions in the digestive tract should be taken into account. In this scenario, a bioaccumulation study was conducted to evaluate the transference of PCDDs/PCDFs from the sepiolite into the animal tissues when fed with feed containing sepiolite. To this end, chickens were used as a model to examine the bioavailability of PCDDs/PCDFs. Four groups of chickens were exposed through their diet to a control feed, feed with 3% w/w sepiolite as additive, feed contaminated with PCDDs/PCDFs at concentration around 2.8 pg WHO-TEQ/g and feed with 2% of a contaminated kaolinitic clay (460 pg TEQ/g mineral). Livers of the four studied groups were analyzed throughout the exposure period. Results of this trial showed that the performance of broilers was not affected by the presence of dioxins at levels tested, and chickens did not show any abnormal behaviour. Dioxins intentionally added to the diet were absorbed and accumulated in the liver in a significant manner, whereas the PCDDs/Fs from sepiolite were not available for chickens since livers from broilers fed 3% sepiolite presented similar WHO-TEQ values than those from broilers fed control diet.
Resumo:
Introduction: Isocyanates are sensitizing chemicals used in various industries such as polyurethane foam production or paint-related purposes. Acting as haptens recognized by T-lymphocytes, they can cause allergic asthma and rarely hypersensitivity pneumonitis (HP). We aim to present a case report of acute HP due to hexamethylene diisocyanate (HDI) in a paint quality controller, a profession not generally considered at a high risk for work-related Isocyanates exposure. Case report: A 30-yr-old otherwise healthy female, light smoker working as a paint quality controller developed shortness of breath, malaise, sweating and chills at workplace six hours after handling a HDI-based hardener. Upon admission to emergency department, symptoms had progressed to severe respiratory failure. HR computer tomography (HRCT) showed bilateral ground-glass attenuation without pleural effusion. Rapid clinical and radiological improvement occurred under facial oxygen supply and systemic steroid therapy. Occupational medicine investigations revealed regular handling of HDI using latex gloves without respiratory protection. Assessment at workplace showed insufficient air renewal (1.5 times per hour), inadequate local aspiration and HDI exposure at levels of 1-4.25 ppb/m3 (Swiss Occupation Exposure Limit 5 ppb/m3). Biological monitoring after identical work procedure executed by a co-worker showed HDI exposure (5.1 micrograms hexamethylene diamine/g creatinine). Resumption of work was disadvised because of the life-threatening event. Discussion: The diagnosis of occupational HP is highly supported by classical findings on imagery and typical symptoms occurring within approved latency interval, associated with rapid clinical improvement. Although neither broncho-alveolar lavage nor specific IgG diagnosis (en route) were performed during the acute episode, various blood tests managed to rule out evidence of an infection or autoimmune disease. Other causes of HP seem unlikely as the patient did not have any recurrence of symptoms since absence from work. Workplace evaluation provided significant information on HDI exposure and allowed substantial recommendations to diminish Isocyanate exposure for the 20 still healthy laboratory co-workers. Although the entryways (air or skin) and precise mechanism of toxicity remain unclear, the present case clearly shows that Isocyanates may trigger acute HP in susceptible workers in a profession not generally considered at a high risk.
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 microm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (> 200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m(3))
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.
Resumo:
The present work reports on the preparation of thermoplastic starch (TPS) modified in situ with a diisocyanate derivative. Evidence of the condensation reaction between the hydroxyl groups of starch and glycerol with the isocyanate function (NCO) was confirmed by FTIR analysis. The evolution of the properties of the ensuing TPS, in term of mechanical properties, microstructure, and water sensitivity, was investigated using tensile mechanical, dynamic mechanical thermal analysis (DMTA), X-ray diffraction (XRD), and water uptake. The results showed that the addition of isocyanate did not affect the crystallinity of the TPS and slightly reduced the water uptake of the material. The evolution of the mechanical properties with ageing became less pronounced by the addition of the isocyanate as their amount exceeded 4 to 6wt%.
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.