996 resultados para TISSUE CULTURES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. RESULTS We describe a qPCR technique based on the single copy gene β' DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. CONCLUSIONS This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular Ehlers-Danlos syndrome is a heritable disease of connective tissue caused by mutations in COL3A1, conferring a tissue deficiency of type III collagen. Cutaneous wounds heal poorly in these patients, and they are susceptible to spontaneous and catastrophic rupture of expansible hollow organs like the gut, uterus, and medium-sized to large arteries, which leads to premature death. Although the predisposition for organ rupture is often attributed to inherent tissue fragility, investigation of arteries from a haploinsufficient Col3a1 mouse model (Col3a1+/-) demonstrates that mutant arteries withstand even supraphysiologic pressures comparably to wild-type vessels. We hypothesize that injury that elicits occlusive thrombi instead unmasks defective thrombus resolution resulting from impaired production of type III collagen, which causes deranged remodeling of matrix, persistent inflammation, and dysregulated behavior by resident myofibroblasts, culminating in the development of penetrating neovascular channels that disrupt the mechanical integrity of the arterial wall. Vascular injury and thrombus formation following ligation of the carotid artery reveals an abnormal persistence and elevated burden of occlusive thrombi at 21 post-operative days in vessels from Col3a1+/- mice, as opposed to near complete resolution and formation of a patent and mature neointima in wild-type mice. At only 14 days, both groups harbor comparable burdens of resolving thrombi, but wild-type mice increase production of type III collagen in actively resolving tissues, while mutant mice do not. Rather, thrombi in mutant mice contain higher burdens of macrophages and proliferative myofibroblasts, which persist through 21 days while wild-type thrombi, inflammatory cells, and proliferation all regress. At the same time that increased macrophage burdens were observed at 14 and 21 days post ligation, the medial layer of mutant arterial walls concurrently harbored a significantly higher incidence of penetrating neovessels compared with those in wild-type mice. To assess whether limited type III collagen production alters myofibroblast behavior, fibroblasts from vEDS patients with COL3A1 missense mutations were seeded into three-dimensional fibrin gel constructs and stimulated with transforming growth factor-β1 to initiate myofibroblast differentiation. Although early signaling events occur similarly in all cell lines, late extracellular matrix- and mechanically-regulated events like transcriptional upregulation of type I and type III collagen secretion are delayed in mutant cultures, while transcription of genes encoding intracellular contractile machinery is increased. Sophisticated imaging of collagen synthesized de novo by resident myofibroblasts visualizes complex matrix reorganization by control cells but only meager remodeling by COL3A1 mutant cells, concordant with their compensatory contraction to maintain tension in the matrix. Finally, administration of immunosuppressive rapamycin to mice following carotid ligation sufficiently halts the initial inflammatory phase of thrombus resolution and fully prevents both myofibroblast migration into the thrombus and the differential development of neovessels between mutant and wild-type mice, suggesting that pathological defects in mutant arteries develop secondarily to myofibroblast dysfunction and chronic inflammatory stimulation, rather than as a manifestation of tissue fragility. Together these data establish evidence that pathological defects in the vessel wall architecture develop in mutant arteries as sequelae to abnormal healing and remodeling responses activated by arterial injury. Thus, these data support the hypothesis that events threatening the integrity of type III collagen-deficient vessels develop not as a result of inherent tissue weakness and fragility at baseline but instead as an episodic byproduct of abnormally persistent granulation tissue and fibroproliferative intravascular remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Objective: Identify the most frequent risk factors of Community Acquired-MRSA (CA-MRSA) Skin and Soft-tissue Infections (SSTIs) using a case series of patients and characterize them by age, race/ethnicity, gender, abscess location, druguse and intravenous drug-user (IVDU), underlying medical conditions, homelessness, treatment resistance, sepsis, those whose last healthcare visit was within the last 12 months, and describe the susceptibility pattern from this central Texas population that have come into the University Medical Center Brackenridge (UMCB) Emergency Department (ED). ^ Methods: This study was a retrospective case-series medical record review involving a convenience sample of patients in 2007 from an urban public hospital's ED in Texas that had a SSTI that tested positive for MRSA. All positive MRSA cultures underwent susceptibility testing to determine antibiotic resistance. The demographic and clinical variables that were independently associated with MRSA were determined by univariate and multivariate analysis using logistic regression to calculate odds ratios (OR), 95% confidence intervals, and significance (p≤ 0.05). ^ Results: In 2007, there were 857 positive MRSA cultures. The demographics were: males 60% and females 40%, with the average age of 36.2 (std. dev. =13) the study population consisted of non-Hispanic white (42%), Hispanics (38%), and non-Hispanic black (18.8%). Possible risk factors addressed included using recreational drugs (not including IVDU) (27%) homelessness (13%), diabetes status (12.6%) or having an infectious disease, and IVDU (10%). The most frequent abscess location was the leg (26.6%), followed by the arm and torso (both 13.7%). Eighty-three percent of patients had one prominent susceptibility pattern that had a susceptibility rate for the following antibiotics: trimethoprim/sulfamethoxazole (TMP-SMX) and vancomycin had 100%, gentamicin 99%, clindamycin 96%, tetracycline 96%, and erythromycin 56%. ^ Conclusion: The ED is becoming an important area for disease transmission between the sterile hospital environment and the outside environment. As always, it is important to further research in the ED in an effort to better understand MRSA transmission and antibiotic resistance, as well as to keep surveillance for the introduction of new opportunistic pathogens into the population. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of β1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4–2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a three-dimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of β1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogen-activated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibody-mediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant down-regulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Cross-modulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and β1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of β1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be “normalized” by manipulating either pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomere shortening and telomerase activation in human somatic cells have been implicated in cell immortalization and cellular senescence. To further study the role of telomerase in immortalization, we assayed telomere length and telomerase activity in primary mouse fibroblasts, in spontaneously immortalized cell clones, and in mouse tissues. In the primary cell cultures, telomere length decreased with increased cell doublings and telomerase activity was not detected. In contrast, in spontaneously immortalized clones, telomeres were maintained at a stable length and telomerase activity was present. To determine if telomere shortening occurs in vivo, we assayed for telomerase and telomere length in tissues from mice of different ages. Telomere length was similar among different tissues within a newborn mouse, whereas telomere length differed between tissues in an adult mouse. These findings suggest that there is tissue-specific regulation of mouse telomerase during development and aging in vivo. In contrast to human tissues, most mouse tissues had active telomerase. The presence of telomerase in these tissues may reflect the ease of immortalization of primary mouse cells relative to human cells in culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix accumulation in the renal tubulointerstitium is predictive of a progressive decline in renal function. Transforming growth factor-beta(1) (TGF-beta(1)) and, more recently, connective tissue growth factor (CTGF) are recognized to play key roles in mediating the fibrogenic response, independently of the primary renal insult. Further definition of the independent and interrelated effects of CTGF and TGF-beta(1) is critical for the development of effective antifibrotic strategies. CTGF (20 ng/ml) induced fibronectin and collagen IV secretion in primary cultures of human proximal tubule cells (PTC) and cortical fibroblasts (CF) compared with control values (P < 0.005 in all cases). This effect was inhibited by neutralizing antibodies to either TGF-beta or to the TGF-beta type II receptor (TbetaRII). TGF-beta(1) induced a greater increase in fibronectin and collagen IV secretion in both PTC (P < 0.01) and CF (P < 0.01) compared with that observed with CTGF alone. The combination of TGF-beta(1) and CTGF was additive in their effects on both PTC and CF fibronectin and collagen IV secretion. TGF-beta(1) (2 ng/ml) stimulated CTGF mRNA expression within 30 min, which was sustained for up to 24 h, with a consequent increase in CTGF protein (P < 0.05), whereas CTGF had no effect on TGF-beta(1) mRNA or protein expression. TGF-beta(1) (2 ng/ml) induced phosphorylated (p)Smad-2 within 15 min, which was sustained for up to 24 h. CTGF had a delayed effect on increasing pSmad-2 expression, which was evident at 24 h. In conclusion, this study has demonstrated the key dependence of the fibrogenic actions of CTGF on TGF-beta. It has further uniquely demonstrated that CTGF requires TGF-beta, signaling through the TbetaRII in both PTCs and CFs, to exert its fibrogenic response in this in vitro model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shiga toxigenic Escherichia coli (STEC) serotypes are important foodborne pathogens that cause gastrointestinal disease worldwide. An understanding of how STEC strains attach to surfaces may provide insight into the potential persistence of and contamination with STEC in food environments. The initial attachment of a selection of STEC serotypes to beef muscle and adipose tissue was evaluated for isolates grown in planktonic and sessile culture. Initial experiments were performed to determine whether attachment differed among STEC strains and between the two modes of growth. Viable counts were obtained for loosely and strongly attached cells, and the strength of attachment (S-r) was calculated. All bacterial isolates grown in sessile culture attached in higher numbers to muscle and adipose tissue than did bacteria in planktonic cultures. For all attachment assays performed, mean concentrations for loosely attached cells were consistently higher than concentrations for strongly attached cells. The mean concentrations for strongly attached bacteria for planktonic and sessile cultures were significantly higher (P < 0.05) on adipose than on muscle tissue. However, some strains of STEC, particularly those from sessile culture, did not differ in their attachment to muscle or adipose tissue. S-r values were not significantly different (P > 0.05) among STEC isolates for all assays. No correlation was found between bacterial hydrophobicity and surface charge values (previously determined) and production of surface structures, viable counts, and S-r values. STEC grown in planktonic and sessile culture seems to behave differently with respect to attachment to muscle and adipose tissue. Cells in sessile culture may have a greater potential to strongly attach to meat surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte