965 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large increase in natural gas production occurred in western Colorado’s Piceance basin in the mid- to late-2000s, generating a surge in population, economic activity, and heavy truck traffic in this rural region. We describe the fiscal effects related to this development for two county governments: Garfield and Rio Blanco, and two city governments: Grand Junction and Rifle. Counties maintain rural road networks in Colorado, and Garfield County’s ability to fashion agreements with operators to repair roads damaged during operations helped prevent the types of large new costs seen in Rio Blanco County, a neighboring county with less government capacity and where such agreements were not made. Rifle and Grand Junction experienced substantial oil- and gas-driven population growth, with greater challenges in the smaller, more isolated, and less economically diverse city of Rifle. Lessons from this case study include the value of crafting road maintenance agreements, fiscal risks for small and geographically isolated communities experiencing rapid population growth, challenges associated with limited infrastructure, and the desirability of flexibility in the allocation of oil- and gas-related revenue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil and gas production generates substantial revenue for state and local governments. This report examines revenue from oil and gas production flowing to local governments through four mechanisms: (i) state taxes or fees on oil and gas production; (ii) local property taxes on oil and gas property; (iii) leasing of state-owned land; and (iv) leasing of federally owned land. We examine every major oil- and gas-producing state and find that the share of oil and gas production value allocated to and collected by local governments ranges widely, from 0.5 percent to more than 9 percent due to numerous policy differences among states. School districts and trust funds endowing future school operations tend to see the highest share of revenue, followed by counties. Municipalities and other local governments with more limited geographic boundaries tend to receive smaller shares of oil and gas driven revenue. Some states utilize grant programs to allocate revenue to where impacts from the industry are greatest. Others send most revenue to state operating or trust funds, with little revenue earmarked specifically for local governments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil and gas production in the United States has increased dramatically in the past 10 years. This growth has important implications for local governments, which often see new revenues from a variety of sources: property taxes on oil and gas property, sales taxes driven by the oil and gas workforce, allocations of state revenues from severance taxes or state and federal leases, leases on local government land, and contributions from oil and gas companies to support local services. At the same time, local governments tend to experience a range of new costs such as road damage caused by heavy industry truck traffic, increased demand for emergency services and law enforcement, and challenges with workforce retention. This report examines county and municipal fiscal effects in 14 oil- and gas-producing regions of eight states: AK, CA, KS, OH, OK, NM, UT, and WV. We find that for most local governments, oil and gas development—whether new or longstanding—has a positive effect on local public finances. However, effects can vary substantially due to a variety of local factors and policy issues. For some local governments, particularly those in rural regions experiencing large increases in development, revenues have not kept pace with rapidly increased costs and demand for services, particularly on road repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thisresearch deals with the dynamic modeling of gas lubricated tilting pad journal bearings provided with spring supported pads, including experimental verification of the computation. On the basis of a mathematical model of a film bearing, a computer program has been developed, which can be used for the simulation of a special type of tilting pad gas journal bearing supported by a rotary spring under different loading conditions time dependently (transient running conditions due to geometry variations in time externally imposed). On the basis of literature, different transformations have been used in the model to achieve simpler calculation. The numerical simulation is used to solve a non-stationary case of a gasfilm. The simulation results were compared with literature results in a stationary case (steady running conditions) and they were found to be equal. In addition to this, comparisons were made with a number of stationary and non-stationary bearing tests, which were performed at Lappeenranta University of Technology using bearings designed with the simulation program. A study was also made using numerical simulation and literature to establish the influence of the different bearing parameters on the stability of the bearing. Comparison work was done with literature on tilting pad gas bearings. This bearing type is rarely used. One literature reference has studied the same bearing type as that used in LUT. A new design of tilting pad gas bearing is introduced. It is based on a stainless steel body and electron beam welding of the bearing parts. It has good operation characteristics and is easier to tune and faster to manufacture than traditional constructions. It is also suitable for large serial production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La exposición a polvo de cemento y sílice ha sido estudiada por años en países como Estados Unidos y Canadá, cuando el polvo de cemento se inhala durante diferentes actividades, se puede ocasionar afectación del tracto respiratorio de las personas expuestas. El estudio “Perfil de exposición ocupacional a polvo de cemento y sílice cristalina en procesos de cementación y Fracturamiento hidráulico en el sector Oil & Gas en Colombia: un estudio retrospectivo (2009 – 2013).” Permitió identificar las actividades funcionales que representan un riesgo potencial por la presencia de partículas aerosuspendidas, analizar una base de datos que reúne cerca de 18298 registros de evaluaciones higiénicas en el sector Oil & Gas, realizar posteriormente el cálculo de material particulado en la fracción respirable y sílice cristalina aplicables para cada proceso y el procesamiento de los datos estadísticamente, confrontar estos estimadores estadísticos con los valores límites permisibles definidos por el gobierno nacional, los resultados incluyeron la caracterización de un perfil de exposición ocupacional por actividad funcional para el proceso de cementación, la identificación de los trabajadores más expuestos según las condiciones de exposición y cuáles de estos perfiles superan los límites máximos permisibles para un turno de trabajo de 12 horas, esta información permitirá a los profesionales de la salud e higiene laboral orientar actividades de seguimiento, vigilancia y control en los grupos de exposición similar específicos. Para el proceso de fracturamiento hidráulico los datos encontrados no fueron estadísticamente significativos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous steam injection is one of heavy oil thermal recovery methods used in the Brazilian Northeast because of high occurrence of heavy oil reservoir. In this process, the oil into the reservoir is heated while reduces, substantially, its viscosity and improves the production. This work analyzed how the shaly sand layers influenced in the recovery. The studied models were synthetics, but the used reservoir data can be extrapolated to real situations of Potiguar Basin. The modeling was executed using the STARS - Steam Thermal and Advanced Process Reservoir Simulator - whose version was 2007.10. STARS is a tool of CMG Computer Modeling Group. The study was conducted in two stages, the first we analyzed the influence of reservoir parameters in the thermal process, so some of these were studied, including: horizontal permeability of the reservoir and the layer of shaly sand, ratio of horizontal permeability to vertical permeability, the influence of capillary pressure layer of shaly sand and as the location and dimensions of this heterogeneity can affect the productivity of oil. Among the parameters studied the horizontal permeability of the reservoir showed the most significant influence on the process followed by diversity. In the second stage three models were selected and studied some operational parameters such as injection rate, distance between wells, production time and completion intervals. Among the operating parameters studied the low rate and intermediate distances between wells showed the best recoveries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After the decline of production from natural energy of the reservoir, the methods of enhanced oil recovery, which methods result from the application of special processes such as chemical injection, miscible gases, thermal and others can be applied. The advanced recovery method with alternating - CO2 injection WAG uses the injection of water and gas, normally miscible that will come in contact with the stock oil. In Brazil with the discovery of pre-salt layer that gas gained prominence. The amount of CO2 present in the oil produced in the pre-salt layer, as well as some reservoirs is one of the challenges to be overcome in relation to sustainable production once this gas needs to be processed in some way. Many targets for CO2 are proposed by researchers to describe some alternatives to the use of CO2 gas produced such as enhanced recovery, storage depleted fields, salt caverns storage and marketing of CO2 even in plants. The largest oil discoveries in Brazil have recently been made by Petrobras in the pre -salt layer located between the states of Santa Catarina and Espírito Santo, where he met large volumes of light oil with a density of approximately 28 ° API, low acidity and low sulfur content. This oil that has a large amount of dissolved CO2 and thus a pioneering solution for the fate of this gas comes with an advanced recovery. The objective of this research is to analyze which parameters had the greatest influence on the enhanced recovery process. The simulations were performed using the "GEM" module of the Computer Modelling Group, with the aim of studying the advanced recovery method in question. For this work, semi - synthetic models were used with reservoir and fluid data that can be extrapolated to practical situations in the Brazilian Northeast. The results showed the influence of the alternating injection of water and gas on the recovery factor and flow rate of oil production process, when compared to primary recovery and continuous water injection or continuous gas injection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Collingwood Member is a mid to late Ordovician self-sourced reservoir deposited across the northern Michigan Basin and parts of Ontario, Canada. Although it had been previously studied in Canada, there has been relatively little data available from the Michigan subsurface. Recent commercial interest in the Collingwood has resulted in the drilling and production of several wells in the state of Michigan. An analysis of core samples, measured laboratory data, and petrophysical logs has yielded both a quantitative and qualitative understanding of the formation in the Michigan Basin. The Collingwood is a low permeability and low porosity carbonate package that is very high in organic content. It is composed primarily of a uniformly fine grained carbonate matrix with lesser amounts of kerogen, silica, and clays. The kerogen content of the Collingwood is finely dispersed in the clay and carbonate mineral phases. Geochemical and production data show that both oil and gas phases are present based on regional thermal maturity. The deposit is richest in the north-central part of the basin with thickest deposition and highest organic content. The Collingwood is a fairly thin deposit and vertical fractures may very easily extend into the surrounding formations. Completion and treatment techniques should be designed around these parameters to enhance production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest and most important deposits is the Marcellus Shale. Hydraulic fracturing and horizontal drilling have allowed for the technical feasibility of production, but concerns exist regarding the economics of shale gas production. These concerns are related to limited production and economic data for shale gas wells, declines in the rates of production, falling natural gas prices, oversupply issues coupled with slow growth in U.S. natural gas demand, and rising production costs. An attempt to determine profitability was done through the economic analysis of an average shale gas well using data that is representative of natural gas production from 2009 to 2011 in the Marcellus Shale. Despite the adverse conditions facing the shale gas industry it is concluded from the results of this analysis that a shale gas well in the Marcellus Shale is profitable based on NPV, IRR and breakeven price calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).