312 resultados para THERMOSTABLE XYLANASE
Resumo:
Archaea represent some of the most ancient organisms on earth, and they have relatively uncharacterized DNA repair processes. We now show, using an in vitro assay, that extracts of two Crenarchaeota (Sulfolobus acidocaldarius and Pyrobaculum islandicum) and two Euryarchaeota (Pyrococcus furiosus and Thermococcus litoralis) contain the DNA repair protein O6-alkylguanine-DNA alkyltransferase (ATase). The ATase activities found in the archaea were extremely thermostable, with half-lives at 80°C ranging from 0.5 hr (S. acidocaldarius) to 13 hr (T. litoralis). The temperature optima of the four proteins ranged from ≈75 to ≈100°C, although activity was seen at 37°C, the temperature optimum of the Escherichia coli and human ATases. In all cases, preincubaton of extracts with a short oligonucleotide containing a single O6-methylguanine residue caused essentially complete loss of ATase activity, suggesting that the alkylphosphotriester-DNA alkyltransferase activity seen in some prokaryotes is not present in Archaea. The ATase from Pyrobaculum islandicum had an apparent molecular mass of 15 kDa, making it the smallest of these proteins so far described. In higher organisms, ATase is responsible for the repair of toxic and mutagenic O6-alkylguanine lesions in alkylated DNA. The presence of ATase in these primitive organisms therefore suggests that endogenous or exogenous exposure to agents that generate appropriate substrates in DNA may be an early event in evolution.
Resumo:
We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nitrobenzyl esterase significantly (>14°C increase in Tm) without compromising its catalytic activity at lower temperatures. Furthermore, analysis of the stabilities and activities of large numbers of random mutants indicates that these properties are not inversely correlated. Although enhanced thermostability does not necessarily come at the cost of activity, the process by which the molecule adapts is important. Mutations that increase thermostability while maintaining low-temperature activity are very rare. Unless both properties are constrained (by natural selection or screening) the evolution of one by the accumulation of single amino acid substitutions typically comes at the cost of the other, regardless of whether the two properties are inversely correlated or not correlated at all.
Resumo:
Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell–surface receptors, and gp41 then promotes viral–cell membrane fusion. A soluble, α-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.
Resumo:
There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.
Resumo:
Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have been identified and characterized in Escherichia coli, yeast and humans. So far, little is known about how hyperthermophilic Archaea cope with such pyrimidine damage. Here we report characterization of an endonuclease III homolog, PaNth, from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100°C. The predicted product of 223 amino acids shares significant sequence homology with several [4Fe-4S]-containing DNA N-glycosylases including E.coli endonuclease III (EcNth). The histidine-tagged recombinant protein was expressed in E.coli and purified. Under optimal conditions of 80–160 mM NaCl and 70°C, PaNth displays DNA glycosylase/β-lyase activity with the modified pyrimidine base 5,6-dihydrothymine (DHT). This activity is enhanced when DHT is paired with G. Our data, showing the structural and functional similarity between PaNth and EcNth, suggests that BER of modified pyrimidines may be a conserved repair mechanism in Archaea. Conserved amino acid residues are identified for five subfamilies of endonuclease III/UV endonuclease homologs clustered by phylogenetic analysis.
Resumo:
Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.
Resumo:
The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant.
Resumo:
Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-deficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'protein driven' as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.
Resumo:
A single-tube RT-PCR technique generated a 387 bp or 300 bp cDNA amplicon covering the F-0 cleavage site or the carboxyl (C)-terminus of the HN gene, respectively, of Newcastle disease virus (NDV) strain 1-2. Sequence analysis was used to deduce the amino acid sequences of the cleavage site of F protein and the C-terminus of HN protein, which were then compared with sequences for other NDV strains. The cleavage site of NDV strain 1-2 had a sequence Motif of (112)RKQGRLIG(119), consistent with an avirulent phenotype. Nucleotide sequencing and deduction of amino acids at the C-terminus of HN revealed that strain 1-2 had a 7-amino-acid extension (VEILKDGVREARSSR). This differs from the virulent viruses that caused outbreaks of Newcastle disease in Australia in the 1930s and 1990s, which have HN extensions of 0 and 9 amino acids, respectively. Amino acid sequence analyses of the F and HN genes of strain 1-2 confirmed its avirulent nature and its Australian origin.
Resumo:
The complete genome sequence of the Australian 1-2 heat-tolerant Newcastle disease virus (NDV) vaccine (master seed stocks) was determined and compared to the sequence of the parent virus from which it had been derived after exposure of the parent stock at 56 degrees C for 30 min. Nucleotide changes were observed at a number of positions with synonymous mutations being greater than those observed for non-synonymous mutations. Sequence data for the HN gene of a parental culture of V4 and two heat-tolerant variants of V4 were obtained. These were compared with the data for the 1-2 viruses and with published sequences for parental V4 and for a number of ND vaccine strains. Sequence analyses did not reveal the ARG 303 deletion in the HN protein, previously claimed to be responsible for the thermostable phenotype. No consistent changes were detected that would indicate involvement of the HN protein in heat resistance. The majority of alterations were observed in the L protein of the virus and it is proposed that these alterations were responsible for the heat-tolerant phenotype of the 1-2 NDV vaccine. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Enzyme products did not have a significant effect (P>0.05) on weekly fed intake and weight gain of birds. But feed intake tended to drop and weight gain tended to increase in response to supplementation of the three enzymes. Weight gain of the birds was increased by 0.6% with lipase, 3.7% with phytase and 2.4% with xylanase. Xylanase had a marked effect (P