932 resultados para TDMA (Time Division Multiple Access)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present iterative frequency-domain multiuser detection (MUD) receivers for the uplink transmission of direct sequence code division multiple access systems (DS-CDMA) that combine iterative block decision feedback equalization (IB-DFE) principles with interference cancelation techniques. Both successive interference cancelation (SIC) and parallel interference cancelation (PIC) structures are considered. Our performance results show that the proposed receiver structures have excellent bit error rate (BER) performances, that can be close to the single-user matched filter bound (MFB), even for fully loaded systems and severely time-dispersive channels1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research problem is to study the existing encryption methods and to develop a new technique which is performance wise superior to other existing techniques and at the same time can be very well incorporated in the communication channels of Fault Tolerant Hard Real time systems along with existing Error Checking / Error Correcting codes, so that the intention of eaves dropping can be defeated. There are many encryption methods available now. Each method has got it's own merits and demerits. Similarly, many crypt analysis techniques which adversaries use are also available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the convergence behavior of the least mean square (LMS) filter when used in an adaptive code division multiple access (CDMA) detector consisting of a tapped delay line with adjustable tap weights. The sampling rate may be equal to or higher than the chip rate, and these correspond to chip-spaced (CS) and fractionally spaced (FS) detection, respectively. It is shown that CS and FS detectors with the same time-span exhibit identical convergence behavior if the baseband received signal is strictly bandlimited to half the chip rate. Even in the practical case when this condition is not met, deviations from this observation are imperceptible unless the initial tap-weight vector gives an extremely large mean squared error (MSE). This phenomenon is carefully explained with reference to the eigenvalues of the correlation matrix when the input signal is not perfectly bandlimited. The inadequacy of the eigenvalue spread of the tap-input correlation matrix as an indicator of the transient behavior and the influence of the initial tap weight vector on convergence speed are highlighted. Specifically, a initialization within the signal subspace or to the origin leads to very much faster convergence compared with initialization in the a noise subspace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A standard CDMA system is considered and an extension of Pearson's results is used to determine the density function of the interference. The method is shown to work well in some cases, but not so in others. However this approach can be useful in further determining the probability of error of the system with minimal computational requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration is given to a standard CDMA system and determination of the density function of the interference with and without Gaussian noise using sampling theory concepts. The formula derived provides fast and accurate results and is a simple, useful alternative to other methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networking of computing devices has been going through rapid evolution and thus continuing to be an ever expanding area of importance in recent years. New technologies, protocols, services and usage patterns have contributed to the major research interests in this area of computer science. The current special issue is an effort to bring forward some of these interesting developments that are being pursued by researchers at present in different parts of the globe. Our objective is to provide the readership with some insight into the latest innovations in computer networking through this. This Special Issue presents selected papers from the thirteenth conference of the series (ICCIT 2010) held during December 23-25, 2010 at the Ahsanullah University of Science and Technology. The first ICCIT was held in Dhaka, Bangladesh, in 1998. Since then the conference has grown to be one of the largest computer and IT related research conferences in the South Asian region, with participation of academics and researchers from many countries around the world. Starting in 2008 the proceedings of ICCIT are included in IEEExplore. In 2010, a total of 410 full papers were submitted to the conference of which 136 were accepted after reviews conducted by an international program committee comprising 81 members from 16 countries. This was tantamount to an acceptance rate of 33%. From these 136 papers, 14 highly ranked manuscripts were invited for this Special Issue. The authors were advised to enhance their papers significantly and submit them to undergo review for suitability of inclusion into this publication. Of those, eight papers survived the review process and have been selected for inclusion in this Special Issue. The authors of these papers represent academic and/or research institutions from Australia, Bangladesh, Japan, Korea and USA. These papers address issues concerning different domains of networks namely, optical fiber communication, wireless and interconnection networks, issues related to networking hardware and software and network mobility. The paper titled “Virtualization in Wireless Sensor Network: Challenges and Opportunities” argues in favor of bringing in different heterogeneous sensors under a common virtual framework so that the issues like flexibility, diversity, management and security can be handled practically. The authors Md. Motaharul Islam and Eui-Num Huh propose an architecture for sensor virtualization. They also present the current status and the challenges and opportunities for further research on the topic. The manuscript “Effect of Polarization Mode Dispersion on the BER Performance of Optical CDMA” deals with impact of polarization mode dispersion on the bit error rate performance of direct sequence optical code division multiple access. The authors, Md. Jahedul Islam and Md. Rafiqul Islam present an analytical approach toward determining the impact of different performance parameters. The authors show that the bit error rate performance improves significantly by the third order polarization mode dispersion than its first or second order counterparts. The authors Md. Shohrab Hossain, Mohammed Atiquzzaman and William Ivancic of the paper “Cost and Efficiency Analysis of NEMO Protocol Entities” present an analytical model for estimating the cost incurred by major mobility entities of a NEMO. The authors define a new metric for cost calculation in the process. Both the newly developed metric and the analytical model are likely to be useful to network engineers in estimating the resource requirement at the key entities while designing such a network. The article titled “A Highly Flexible LDPC Decoder using Hierarchical Quasi-Cyclic Matrix with Layered Permutation” deals with Low Density Parity Check decoders. The authors, Vikram Arkalgud Chandrasetty and Syed Mahfuzul Aziz propose a novel multi-level structured hierarchical matrix approach for generating codes of different lengths flexibly depending upon the requirement of the application. The manuscript “Analysis of Performance Limitations in Fiber Bragg Grating Based Optical Add-Drop Multiplexer due to Crosstalk” has been contributed by M. Mahiuddin and M. S. Islam. The paper proposes a new method of handling crosstalk with a fiber Bragg grating based optical add drop multiplexer (OADM). The authors show with an analytical model that different parameters improve using their proposed OADM. The paper “High Performance Hierarchical Torus Network Under Adverse Traffic Patterns” addresses issues related to hierarchical torus network (HTN) under adverse traffic patterns. The authors, M.M. Hafizur Rahman, Yukinori Sato, and Yasushi Inoguchi observe that dynamic communication performance of an HTN under adverse traffic conditions has not yet been addressed. The authors evaluate the performance of HTN for comparison with some other relevant networks. It is interesting to see that HTN outperforms these counterparts in terms of throughput and data transfer under adverse traffic. The manuscript titled “Dynamic Communication Performance Enhancement in Hierarchical Torus Network by Selection Algorithm” has been contributed by M.M. Hafizur Rahman, Yukinori Sato, and Yasushi Inoguchi. The authors introduce three simple adapting routing algorithms for efficient use of physical links and virtual channels in hierarchical torus network. The authors show that their approaches yield better performance for such networks. The final title “An Optimization Technique for Improved VoIP Performance over Wireless LAN” has been contributed by five authors, namely, Tamal Chakraborty, Atri Mukhopadhyay, Suman Bhunia, Iti Saha Misra and Salil K. Sanyal. The authors propose an optimization technique for configuring the parameters of the access points. In addition, they come up with an optimization mechanism in order to tune the threshold of active queue management system appropriately. Put together, the mechanisms improve the VoIP performance significantly under congestion. Finally, the Guest Editors would like to express their sincere gratitude to the 15 reviewers besides the guest editors themselves (Khalid M. Awan, Mukaddim Pathan, Ben Townsend, Morshed Chowdhury, Iftekhar Ahmad, Gour Karmakar, Shivali Goel, Hairulnizam Mahdin, Abdullah A Yusuf, Kashif Sattar, A.K.M. Azad, F. Rahman, Bahman Javadi, Abdelrahman Desoky, Lenin Mehedy) from several countries (Australia, Bangladesh, Japan, Pakistan, UK and USA) who have given immensely to this process. They have responded to the Guest Editors in the shortest possible time and dedicated their valuable time to ensure that the Special Issue contains high-quality papers with significant novelty and contributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time division multiplexing (TDM) array for passive multiplexing of identical fibre, optic intensity sensors has been demonstrated. Microbending loss sensors are introduced in fibre optic rings and pressure information is directly detected, demultiplexed and demodulated from the relative amplitude of the first two pulses produced on each ring. Several dynamic ranges from 6 dB to 14 dB are shown. A comparison between both fibre optic ring and Mach-Zehnder structure impulse responses is carried out and the consequences derived from second- and higher-order recirculating ring pulses are also evaluated. This technique can be applied to those TDM intensity sensing schemes which require low cost, high number of identical sensors, and suffer high element loss and undersirable intensity fluctuations at low frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a new way to mask the data in a one-user communication system when direct sequence - code division multiple access (DS-CDMA) techniques are used. The code is generated by a digital chaotic generator, originally proposed by us and previously reported for a chaos cryptographic system. It is demonstrated that if the user's data signal is encoded with a bipolar phase-shift keying (BPSK) technique, usual in DS-CDMA, it can be easily recovered from a time-frequency domain representation. To avoid this situation, a new system is presented in which a previous dispersive stage is applied to the data signal. A time-frequency domain analysis is performed, and the devices required at the transmitter and receiver end, both user-independent, are presented for the optical domain.