889 resultados para Systems engineering
Resumo:
The international economic and business environment continues to develop at a rapid rate. Increasing interactions between economies, particularly between Europe and Asia, has raised many important issues regarding transport infrastructure, logistics and broader supply chain management. The potential exists to further stimulate trade provided that these issues are addressed in a logical and systematic manner. However, if this potential is to be realised in practice there is a need to re-evaluate current supply chain configurations. A mismatch currently exists between the technological capability and the supply chain or logistical reality. This mismatch has sharpened the focus on the need for robust approaches to supply chain re-engineering. Traditional approaches to business re-engineering have been based on manufacturing systems engineering and business process management. A recognition that all companies exist as part of bigger supply chains has fundamentally changed the focus of re-engineering. Inefficiencies anywhere in a supply chain result in the chain as a whole being unable to reach its true competitive potential. This reality, combined with the potentially radical impact on business and supply chain architectures of the technologies associated with electronic business, requires organisations to adopt innovative approaches to supply chain analysis and re-design. This paper introduces a systems approach to supply chain re-engineering which is aimed at addressing the challenges which the evolving business environment brings with it. The approach, which is based on work with a variety of both conventional and electronic supply chains, comprises underpinning principles, a methodology and guidelines on good working practice, as well as a suite of tools and techniques. The adoption of approaches such as that outlined in this paper helps to ensure that robust supply chains are designed and implemented in practice. This facilitates an integrated approach, with involvement of all key stakeholders throughout the design process.
Resumo:
Society depends on complex IT systems created by integrating and orchestrating independently managed systems. The incredible increase in scale and complexity in them over the past decade means new software-engineering techniques are needed to help us cope with their inherent complexity. The key characteristic of these systems is that they are assembled from other systems that are independently controlled and managed. While there is increasing awareness in the software engineering community of related issues, the most relevant background work comes from systems engineering. The interacting algos that led to the Flash Crash represent an example of a coalition of systems, serving the purposes of their owners and cooperating only because they have to. The owners of the individual systems were competing finance companies that were often mutually hostile. Each system jealously guarded its own information and could change without consulting any other system.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Dynamic method of stiffness identification in impacting systems for percussive drilling applications
Resumo:
Peer reviewed
Resumo:
Part 1: Introduction
Resumo:
As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system
Resumo:
This paper presents LABNET, an internet-based remote laboratory for control engineering education developed at UEM-University. At present, the remote laboratory integrates three basic physical systems (level control, temperature control and ship stabilizing system). In this paper, the LABNET architecture is presented and discussed in detail. Issues concerned with concurrent user access, local or remote feedback, automatic report generating and reusing of experiment’s templates have been addressed. Furthermore, the experiences gained developing, testing and using the system will be also presented and their consequences for future design.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
An experimental study of the Polarization Dependent Loss (PDL) is performed in an Optical Recirculating Loop (RCL). The RCL enables to simulate the transmission through various optical links using just one optical fiber spool, one in line amplifier, some optical filters and devices in a low cost manner. The total amount of PDL in a Recirculating loop, due to its statistical nature, is different of the simple sum of each element of the recirculating loop because of the alignment variation of the PDL elements with time, depending on the environmental conditions such as fiber stress and temperature. In this paper theoretical studies are also performed using formalism of Jones and Mueller matrices in order to represent the different optical elements in the recirculating loop. The PDL must be correctly characterized in order to evaluate properly the impact on the performance of next generation DWDM systems. Theoretical and experimental results comparison shows that a depolarization of 7% occurs in the experimental setup, probably by the optical amplifier due to the depolarized nature of the amplified spontaneous emission.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A fuzzy control strategy for voltage regulation in electric power distribution systems is introduced in this article. This real-time controller would act on power transformers equipped with under-load tap changers. The fuzzy system was employed to turn the voltage-control relays into adaptive devices. The scope of the present study has been limited to the power distribution substation, and both the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage control strategies that satisfy both the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. A prototype based on the fuzzy control strategy proposed in this paper has also been implemented for validation purposes and its experimental results were highly satisfactory.
Resumo:
This paper presents an approach for the active transmission losses allocation between the agents of the system. The approach uses the primal and dual variable information of the Optimal Power Flow in the losses allocation strategy. The allocation coefficients are determined via Lagrange multipliers. The paper emphasizes the necessity to consider the operational constraints and parameters of the systems in the problem solution. An example, for a 3-bus system is presented in details, as well as a comparative test with the main allocation methods. Case studies on the IEEE 14-bus systems are carried out to verify the influence of the constraints and parameters of the system in the losses allocation.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.