915 resultados para Synaptic Plasticity


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent but not pre-adolescent CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect upon backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate backpropagating action potentials. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally-increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally-regulated manner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral–CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral–CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons often fire in bursts of action potentials with short interspike intervals (2–10 msec). These high-frequency bursts may play a critical role in the functional behavior of hippocampal neurons, but synaptic plasticity at such short times has not been carefully studied. To study synaptic modulation at very short time intervals, we applied pairs of stimuli with interpulse intervals ranging from 7 to 50 msec to CA1 synapses isolated by the method of minimal stimulation in hippocampal slices. We have identified three components of short-term paired-pulse modulation, including (i) a form of synaptic depression manifested after a prior exocytotic event, (ii) a form of synaptic depression that does not depend on a prior exocytotic event and that we postulate is based on inactivation of presynaptic N-type Ca2+ channels, and (iii) a dependence of paired-pulse facilitation on the exocytotic history of the synapse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies have identified the potential for an important role for serotonin (5-HT) receptors in the developmental plasticity of the kitten visual cortex. 5-HT2C receptors are transiently expressed in a patchy fashion in the visual cortex of kittens between 30–80 days of age complementary to patches demarcated by cytochrome oxidase staining. 5-HT, operating via 5-HT2C receptors, increases cortical synaptic plasticity as assessed both in brain slices and in vivo. Herein, we report that bath application of 5-HT substantially increases the probability of long-term potentiation within 5-HT2C receptor-rich zones of cortex, but this effect is not observed in the 5-HT2C receptor-poor zones. Instead, in these zones, 5-HT application increases the probability of long-term depression. These location-specific effects of 5-HT may promote the formation of compartment-specific cortical responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical “learning rule,” devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long-lasting forms of activity-dependent synaptic plasticity involve molecular modifications that require gene expression. Here, we describe a cellular mechanism that mediates the targeting newly synthesized gene transcripts to individual synapses where they are locally translated. The features of this mechanism have been revealed through studies of the intracellular transport and synaptic targeting of the mRNA for a recently identified immediate early gene called activity-regulated cytoskeleton-associated protein Arc. Arc is strongly induced by patterns of synaptic activity that also induce long-term potentiation, and Arc mRNA is then rapidly delivered into dendrites after episodes of neuronal activation. The newly synthesized Arc mRNA localizes selectively at synapses that recently have been activated, and the encoded protein is assembled into the synaptic junctional complex. The dynamics of trafficking of Arc mRNA reveal key features of the mechanism through which synaptic activity can both induce gene expression and target particular mRNA transcripts to the active synapses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synaptophysin (syp I) is a synaptic vesicle membrane protein that constitutes approximately 7% of the total vesicle protein. Multiple lines of evidence implicate syp I in a number of nerve terminal functions. To test these, we have disrupted the murine Syp I gene. Mutant mice lacking syp I were viable and fertile. No changes in the structure and protein composition of the mutant brains were observed except for a decrease in synaptobrevin/VAMP II. Synaptic transmission was normal with no detectable changes in synaptic plasticity or the probability of release. Our data demonstrate that one of the major synaptic vesicle membrane proteins is not essential for synaptic transmission, suggesting that its function is either redundant or that it has a more subtle function not apparent in the assays used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synaptic plasticity is modulated by Ca(2+)-induced alterations in the balance between phosphorylation and dephosphorylation. Recent evidence suggests that calcineurin, the Ca(2+)-calmodulin-dependent phosphatase (2B), modulates the activity of postsynaptic glutamate receptors. However, in rat cortex, calcineurin is enriched mainly in presynaptic, not postsynaptic, fractions. To determine if calcineurin modulates glutamatergic neurotransmission through a presynaptic mechanism, we used whole-cell patch clamp experiments to test effects of two specific calcineurin inhibitors, cyclosporin A (CsA) and FK506, on synaptic activity in fetal rat cortical neurons. The rate of spontaneous action-potential firing was markedly increased by either CsA or FK506 but was unaffected by rapamycin, a structural analog of FK506 which has no effect on calcineurin. In voltage-clamp experiments, CsA increased the rate but not the amplitude of glutamate receptor-mediated, excitatory postsynaptic currents, suggesting an increased rate of glutamate release. CsA had no effect on the amplitude of currents evoked by brief bath application of selective glutamate receptor agonists, providing further evidence for a pre- rather than postsynaptic site of action. In conclusion, these data indicate that calcineurin modulates glutamatergic neurotransmission in rat cortical neurons through a presynaptic mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group l etabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synaptic plasticity is the dynamic regulation of the strength of synaptic communication between nerve cells. It is central to neuronal development as well as experience-dependent remodeling of the adult nervous system as occurs during memory formation. Aberrant forms of synaptic plasticity also accompany a variety of neurological and psychiatric diseases, and unraveling the biological basis of synaptic plasticity has been a major goal in neurobiology research. The biochemical and structural mechanisms underlying different forms of synaptic plasticity are complex, involving multiple signaling cascades, reconfigurations of structural proteins and the trafficking of synaptic proteins. As such, proteomics should be a valuable tool in dissecting the molecular events underlying normal and disease-related forms of plasticity. In fact, progress in this area has been disappointingly slow. We discuss the particular challenges associated with proteomic interrogation of synaptic plasticity processes and outline ways in which we believe proteomics may advance the field over the next few years. We pay particular attention to technical advances being made in small sample proteomics and the advent of proteomic imaging in studying brain plasticity.