995 resultados para Symbolic dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ross River virus (RRV) is a mosquito-borne member of the genus Alphavirus that causes epidemic polyarthritis in humans, costing the Australian health system at least US$10 million annually. Recent progress in RRV vaccine development requires accurate assessment of RRV genetic diversity and evolution, particularly as they may affect the utility of future vaccination. In this study, we provide novel RRV genome sequences and investigate the evolutionary dynamics of RRV from time-structured E2 gene datasets. Our analysis indicates that, although RRV evolves at a similar rate to other alphaviruses (mean evolutionary rate of approx. 8x10(-4) nucleotide substitutions per site year(-1)), the relative genetic diversity of RRV has been continuously low through time, possibly as a result of purifying selection imposed by replication in a wide range of natural host and vector species. Together, these findings suggest that vaccination against RRV is unlikely to result in the rapid antigenic evolution that could compromise the future efficacy of current RRV vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes effects of different practice task constraints on heart rate (HR) variability during 4v4 smallsided football games. Participants were sixteen football players divided into two age groups (U13, Mean age: 12.4±0.5 yrs; U15: 14.6±0.5). The task consisted of a 4v4 sub-phase without goalkeepers, on a 25x15 m field, of 15 minutes duration with an active recovery period of 6 minutes between each condition. We recorded players’ heart rates using heart rate monitors (Polar Team System, Polar Electro, Kempele, Finland) as scoring mode was manipulated (line goal: scoring by dribbling past an extended line; double goal: scoring in either of two lateral goals; and central goal: scoring only in one goal). Subsequently, %HR reserve was calculated with the Karvonen formula. We performed a time-series analysis of HR for each individual in each condition. Mean data for intra-participant variability showed that autocorrelation function was associated with more short-range dependence processes in the “line goal” condition, compared to other conditions, demonstrating that the “line goal” constraint induced more randomness in HR response. Relative to inter-individual variability, line goal constraints demonstrated lower %CV and %RMSD (U13: 9% and 19%; U15: 10% and 19%) compared with double goal (U13: 12% and 21%; U15: 12% and 21%) and central goal (U13: 14% and 24%; U15: 13% and 24%) task constraints, respectively. Results suggested that line goal constraints imposed more randomness on cardiovascular stimulation of each individual and lower inter-individual variability than double goal and central goal constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the place of early childhood literacy in the discursive construction of the identity( ies) of ‘proper’ parents. Our analysis crosses between representations of parenting in texts produced by commercial and government/public institutional interests and the self-representations of individual parents in interviews with the researchers. The argument is made that there are commonalities and disjunctures in represented and lived parenting identities as they relate to early literacy. In commercial texts that advertise educational and other products, parents are largely absent from representations and the parent’s position is one of consumer on behalf of the child. In government-sanctioned texts, parents are very much present and are positioned as both learners about and important facilitators of early learning when they ‘interact’ with their children around language and books. The problem for which both, in their different ways, offer a solution is the ‘‘not-yet-ready’’ child precipitated into the evaluative environment of school without the initial competence seen as necessary to avoid falling behind right from the start. Both kinds of producers promise a smooth induction of children into mainstream literacy and learning practices if the ‘good parent’ plays her/his part. Finally, we use two parent cases to illustrate how parents’ lived practice involves multiple discursive practices and identities as they manage young children’s literacy and learning in family contexts in which they also need to negotiate relations with their partners and with paid and domestic work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research in structural dynamics has received considerable attention due to problems associated with emerging slender structures, increased vulnerability of structures to random loads and aging infrastructure. This paper briefly describes some such research carried out on i) dynamics of composite floor structure, ii) dynamics of cable supported footbridge, iii) seismic mitigation of frame-shear wall structure using passive dampers and iv) development of a damage assessment model for use in structural health modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 1999 the Department of Industry, Science and Resources (ISR) published 4 research reports it had commissioned from the Australian Expert Group in Industry Studies (AEGIS), a research centre of the University of Western Sydney, Macarthur. ISR will shortly publish the fifth and final report in this series. The five reports were commissioned by the Department, as part of the Building and Construction Action Agenda process, to investigate the dynamics and performance of the sector, particularly in relation its innovative capacity. Professor Jane Marceau, PVCR at the University of Western Sydney and Director of AEGIS, led the research team. Dr Karen Manley was the researcher and joint author on three of the five reports. This paper outlines the approach and key findings of each of the five reports. The reports examined 5 key elements of the ‘building and construction product system’. The term ‘product system’ reflects the very broad range of industries and players we consider to contribute to the performance of the building and construction industries. The term ‘product system’ also highlights our focus on the systemic qualities of the building and construction industries. We were most interested in the inter-relationships between key segments and players and how these impacted on the innovation potential of the product system. The ‘building and construction product system’ is hereafter referred to as ‘the industry’ for ease of presentation. All the reports are based, at least in part, on an interviewing or survey research phase which involved gathering data from public and private sector players nationally. The first report ‘maps’ the industry to identify and describe its key elements and the inter-relationships between them. The second report focuses specifically on the linkages between public-sector research organisations and firms in the industry. The third report examines the conditions surrounding the emergence of new businesses in the industry. The fourth report examines how manufacturing businesses are responding to customer demands for ‘total solutions’ to their building and construction needs, by providing various services to clients. The fifth report investigates the capacity of the industry to encourage and undertake energy efficient building design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction Design is a fast developing branch of Industrial Design. The availability of cheap microprocessors and sensor electronics allow interactions between people and products that were until recently impossible. This has added additional layers of complexity to the design process. Novice designers find it difficult to effectively juggle these complexities and typically tend to focus on one aspect at a time. They also tend to take a linear, step-by-step approach to the design process in contrast to expert designers who pursue “parallel lines of thought” whilst simultaneously co-evolving both problem and solution. (Lawson, 1993) This paper explores an approach that encourages designers (in this case novice designers) to take a parallel rather than linear approach to the design process. It also addresses the problem of social loafing that tends to occur in team activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design