956 resultados para Surface characteristics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Examination of conditional instability of the second kind (CISK) and wind-induced surface heat exchange (WISHE), two proposed mechanisms for tropical cyclone and polar low intensification, suggests that the sensitivity of the intensification rate of these disturbances to surface properties, such as surface friction and moisture supply, will be different for the two mechanisms. These sensitivities were examined by perturbing the surface characteristics in a numerical model with explicit convection. The intensification rate was found to have a strong positive dependence on the heat and moisture transfer coefficients, while remaining largely insensitive to the frictional drag coefficient. CISK does not predict the observed dependence of vortex intensification rate on the heat and moisture transfer coefficients, nor the insensitivity to the frictional drag coefficient since it anticipates that intensification rate is controlled by frictional convergence in the boundary layer. Since neither conditional instability nor boundary moisture content showed any significant sensitivity to the transfer coefficients, this is true of CISK using both the convective closures of Ooyama and of Charney and Eliassen. In comparison, the WISHE intensification mechanism does predict the observed increase in intensification rate with heat and moisture transfer coefficients, while not anticipating a direct influence from surface friction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period when

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five paired global climate model experiments, one with an ice pack that only responds thermodynamically (TI) and one including sea-ice dynamics (DI), were used to investigate the sensitivity of Arctic climates to sea-ice motion. The sequence of experiments includes situations in which the Arctic was both considerably colder (Glacial Inception, ca 115,000 years ago) and considerably warmer (3 × CO2) than today. Sea-ice motion produces cooler anomalies year-round than simulations without ice dynamics, resulting in reduced Arctic warming in warm scenarios and increased Arctic cooling in cold scenarios. These changes reflect changes in atmospheric circulation patterns: the DI simulations favor outflow of Arctic air and sea ice into the North Atlantic by promoting cyclonic circulation centered over northern Eurasia, whereas the TI simulations favor southerly inflow of much warmer air from the North Atlantic by promoting cyclonic circulation centered over Greenland. The differences between the paired simulations are sufficiently large to produce different vegetation cover over >19% of the land area north of 55°N, resulting in changes in land-surface characteristics large enough to have an additional impact on climate. Comparison of the DI and TI experiments for the mid-Holocene (6000 years ago) with paleovegetation reconstructions suggests the incorporation of sea-ice dynamics yields a more realistic simulation of high-latitude climates. The spatial pattern of sea-ice anomalies in the warmer-than-modern DI experiments strongly resembles the observed Arctic Ocean sea-ice dipole structure in recent decades, consistent with the idea that greenhouse warming is already impacting the high-northern latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regular use of mouthrinses, particularly when combined with the use of air-powder polishing, could affect the appearance of tooth-colored restorations. The current study sought to evaluate the effect of NaHCO(3) powder on translucency of a microfilled composite resin immersed in different mouthrinses, at distinct evaluation periods. Eighty disk-shaped specimens of composite resin (Durafill VS, Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) were prepared. The composite specimens were then randomly allocated into two groups according to the surface treatment: exposure to NaHCO(3) powder (10 seconds) or nonexposure, and they were randomly assigned into four subgroups, according to the mouthrinses employed (N = 10): Periogard (Colgate/Palmolive, Sao Bernardo do Campo, SP, Brazil), Cepacol (Aventis Pharma, Sao Paulo, SP, Brazil), Plax (Colgate/Palmolive), and distilled water (control group). The samples were immersed for 2 minutes daily, 5 days per week, over a 4-month test period. Translucency was measured with a transmission densitometer at seven evaluation periods. Statistical analyses (analysis of variance and Tukey`s test) revealed that: distilled water presented higher translucency values (86.72%); Periogard demonstrated the lowest translucency values (72.70%); and Plax (74.05%) and Cepacol (73.32%) showed intermediate translucency values, which were statistically similar between them (p > 0.01). NaHCO(3) air-powder polishing increased the changes in translucency associated with the mouthrinses. Air-powder polishing alone had no effect on material translucency. Translucency percent was gradually decreased from 1 week of immersion up to 4 months. It may be concluded that the NaHCO(3) powder and the tested mouthrinses have affected the translucency of microfilled composite resin, according to the tested time. CLINICAL SIGNIFICANCE During the last decade, the demand for composite resin restorations has grown considerably, however, controversy persists regarding the effect of surface roughness on color stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an automatic method to detect and classify weathered aggregates by assessing changes of colors and textures. The method allows the extraction of aggregate features from images and the automatic classification of them based on surface characteristics. The concept of entropy is used to extract features from digital images. An analysis of the use of this concept is presented and two classification approaches, based on neural networks architectures, are proposed. The classification performance of the proposed approaches is compared to the results obtained by other algorithms (commonly considered for classification purposes). The obtained results confirm that the presented method strongly supports the detection of weathered aggregates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The α-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (α-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia α-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia α-DsbA1 possesses a second disulfide that is highly conserved in α-proteobacterial DsbAs but not in other DsbAs. The α-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of α-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As monolithic columns become more extensively used in separation based applications due to their good flow and high surface characteristics, there has arisen the need to establish simple, reliable fabrication methods for fluidic coupling and sealing. In particular, the problem of liquid tracking between a monolith's outer surface and the sealing wall, resulting in poor flow-through performance, needs to be addressed. This paper describes a novel resin-based encapsulation method that penetrates 0.3 mm into the outer surface of a 4 mm diameter monolith, removing the so-called wall-effect. Results based on the peak analysis from 1 μL of 0.4% thiourea injected into a 98:2 water:methanol mobile phase flowing at 1 mL min-1 indicate excellent flow conservation through the monolith. A comparison of peak shape and height equivalent to a theoretical plate (HETP) data between the reported resin-based method and the previously reported heat shrink tubing encapsulation methodology, for the same batch of monoliths, suggests the resin based method offers far superior flow characteristics. In addition to the improved flow properties, the resin casting method enables standard polyether ether ketone (PEEK) fittings to be moulded and subsequently unscrewed from the device offering simple reliable fluidic coupling to be achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some fibrous materials, for having properties such as biocompatibility, strength and flexibility, are of great interest for medical and pharmaceutical applications. Among these materials, the fabric made from polylactic acid (PLA) has received special attention, and beside to present these features, is derived from biological source, antimicrobial and bioabsorbable. One of the limitations of PLA is its low wettability and capillarity. Due to this, it is necessary to perform surface modification of the knitted fabric, increasing its hydrophilicity. This work aims to realize the plasma treatment at low pressure in order to increase the surface energy of the polymer. The work was divided into three steps: i) Influence of the gas ratio (oxygen and nitrogen) in the surface modification of PLA fabric after the plasma treatment, ii) physical characterization and physicochemical surface tissue; iii) Evaluation of the effect from current and gas ratio in the capillary rise of tissues and iv) Study of capillarity in yarns and fabrics. The results showed that better gas ratios were the atmospheres: 100% oxygen; 100% nitrogen and 50% oxygen and 50% nitrogen. The surface characterization showed changes in topography and introduction of polar groups which increased the wettability of the fabric. In another part of this study, it was found that the atmosphere containing only nitrogen gas showed the most capillary rise to a current of 0.15 A. The results in capillary yarns and fabrics showed that the thread reached equilibrium in a time much less than the fabric to an atmosphere of 100% nitrogen and 0.15 A. Current Plasma technology was effective to increase the hydrophilicity of PLA fabric, providing surface characteristics favorable for future application in the biomedical field

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho objetivou avaliar o efeito de surfatantes em soluções aquosas sobre a tensão superficial dinâmica e ângulo de contato das gotas em diferentes superfícies: artificiais (lâmina de vidro e de óxido de alumínio) e naturais (superfícies adaxiais de folhas de Euphorbia heterophylla, Ipomoea grandifolia e Brachiaria plantaginea). Seis formulações de surfatantes (Antideriva®; Uno®; Pronto 3®; Li-700®; Supersil® e Silwet L-77®), respectivamente nas doses recomendadas do produto comercial (0,050; 0,025; 0,100; 0,250; 0,100 e 0,100 % v v-1) e o dobro delas, foram avaliadas em soluções aquosas. A tensão superficial dinâmica e o ângulo de contato formado sobre as superfícies naturais foram medidos por tensiômetro. Os ângulos de contato formados pelas gotas nas superfícies artificiais foram obtidos por análise de imagens capturadas por uma câmera digital. Os surfatantes influenciam nas propriedades físico-químicas de soluções aquosas. As soluções contendo os surfatantes Silwet L-77® e Supersil®; nas doses de 0,100 e 0,200% v v-1; proporcionaram maiores reduções na tensão superficial dinâmica e menores ângulos de contato das gotas sobre as superfícies artificiais e naturais. Os surfatantes organossiliconados em solução aquosa foram mais eficientes na redução da tensão superficial e proporcionaram maior molhamento de superfícies natural e artificial. em alvos naturais, essas propriedades obtidas com organossiliconados são dependentes das características de superfície das espécies vegetais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose chemically modified with p-aminobenzoic groups, abbreviated as Cel-PAB, was used for preconcentration of copper, iron, nickel, and zinc from ethanol fuel, normally used in Brazil as engine fuel. The surface characteristics and the surface area of the cellulose were obtained before and after chemical modification using FT-IR, elemental analysis, and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The purpose of this study was to research a membrane material for use in guided bone regeneration. Study design: In this study, 25 male Wistar rats were used to analyze the biocompatibility and degradation process of biomembranes. The morphological changes in subcutaneous implantations were assessed after 7, 14, 21, 28 and 70 days. The materials were made of polyurethane polymer (AUG) obtained from vegetal oil (Ricinus communis) and polytetrafluoroethylene membrane (PTFE). The surface characteristics of the physical barriers in scanning electronic microscopic (SEM) were also evaluated. Results: In both groups, the initial histological analysis showed moderate inflammatory infiltrate, which was predominantly polymorphonuclear. There was also a presence of edema, which was gradually replaced by granulation tissue, culminating in a fibrous capsule. In the AUG group, some multinucleated giant cells were present in the contact interface, with the space previously occupied by the material. However, membrane degradation was not observed during the period studied. According to the present SEM findings, porosity was not detected in the AUG or PTFE membranes. Conclusion: The researched material is biocompatible and the degradation process is extremely slow or may not even occur at all.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)