977 resultados para Supply network mapping
Resumo:
Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these.
Resumo:
This paper analyzes the theme of knowledge transfer in supply chain management. The aim of this study is to present the social network analysis (SNA) as an useful tool to study knowledge networks within supply chain, to monitor knowledge flows and to identify the accumulating knowledge nodes of the networks.
Resumo:
Purpose: Short product life cycle and/or mass customization necessitate reconfiguration of operational enablers of supply chain (SC) from time to time in order to harness high levels of performance. The purpose of this paper is to identify the key operational enablers under stochastic environment on which practitioner should focus while reconfiguring a SC network. Design/methodology/approach: The paper used interpretive structural modeling (ISM) approach that presents a hierarchy-based model and the mutual relationships among the enablers. The contextual relationship needed for developing structural self-interaction matrix (SSIM) among various enablers is realized by conducting experiments through simulation of a hypothetical SC network. Findings: The research identifies various operational enablers having a high driving power towards assumed performance measures. In this regard, these enablers require maximum attention and of strategic importance while reconfiguring SC. Practical implications: ISM provides a useful tool to the SC managers to strategically adopt and focus on the key enablers which have comparatively greater potential in enhancing the SC performance under given operational settings. Originality/value: The present research realizes the importance of SC flexibility under the premise of reconfiguration of the operational units in order to harness high value of SC performance. Given the resulting digraph through ISM, the decision maker can focus the key enablers for effective reconfiguration. The study is one of the first efforts that develop contextual relations among operational enablers for SSIM matrix through integration of discrete event simulation to ISM. © Emerald Group Publishing Limited.
Resumo:
This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.
Resumo:
The aim of this paper is to propose a conceptual framework for studying the knowledge transfer problem within the supply chain. The social network analysis (SNA) is presented as a useful tool to study knowledge networks within supply chain, to visualize knowledge flows and to identify the accumulating knowledge nodes of the networks. © 2011 IEEE.
Resumo:
This research adds to a body of work exploring the role of Social Network Analysis (SNA) in the study of both relational and structural characteristics of supply chain networks. Two contrasting network cases (food enterprises and digital-based enterprises) are chosen in order to elicit structural differences in business networks subject to divergences in local embeddedness and the relative materiality of the goods and services produced. Our analysis and findings draw out differences in network structure as evidenced by metrics of network centralization and cohesion, the presence of components and other sub-groupings, and the position of central actors. We relate these structural features both to the nature of the networks and to the (qualitative) experiences of the actors themselves. We find, in particular, the role of customers as co-creators of knowledge (for the Food network), the central role of infrastructure and services (for the Digital network), the importance of ICT as a source of codified knowledge inputs, along with the continuing importance of geographical proximity for the development and transfer of tacit knowledge and for incremental learning.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
The competition among the companies depends on the velocity and efficience they can create and commercialize knowledge in a timely and cost-efficient manner. In this context, collaboration emerges as a reaction to the environmental changes. Although strategic alliances and networks have been exploited in the strategic literature for decades, the complexity and continuous usage of these cooperation structures, in a world of growing competition, justify the continuous interest in both themes. This article presents a scanning of the contemporary academic production in strategic alliances and networks, covering the period from January 1997 to august 2007, based on the top five journals accordingly to the journal of Citation Report 2006 in the business and management categories simultaneously. The results point to a retraction in publications about strategic alliances and a significant growth in the area of strategic. networks. The joint view of strategic alliances and networks, cited by some authors a the evolutionary path of study, still did not appear salient. The most cited topics found in the alliance literature are the governance structure, cooperation, knowledge transfer, culture, control, trust, alliance formation,,previous experience, resources, competition and partner selection. The theme network focuses mainly on structure, knowledge transfer and social network, while the joint vision is highly concentrated in: the subjects of alliance formation and the governance choice.
Resumo:
Background: There has been a proliferation of quality use of medicines activities in Australia since the 1990s. However, knowledge of the nature and extent of these activities was lacking. A mechanism was required to map the activities to enable their coordination. Aims: To develop a geographical mapping facility as an evaluative tool to assist the planning and implementation of Australia's policy on the quality use of medicines. Methods: A web-based database incorporating geographical mapping software was developed. Quality use of medicines projects implemented across the country was identified from project listings funded by the Quality Use of Medicines Evaluation Program, the National Health and Medical Research Council, Mental Health Strategy, Rural Health Support, Education and Training Program, the Healthy Seniors Initiative, the General Practice Evaluation Program and the Drug Utilisation Evaluation Network. In addition, projects were identified through direct mail to persons working in the field. Results: The Quality Use of Medicines Mapping Project (QUMMP) was developed, providing a Web-based database that can be continuously updated. This database showed the distribution of quality use of medicines activities by: (i) geographical region, (ii) project type, (iii) target group, (iv) stakeholder involvement, (v) funding body and (vi) evaluation method. At September 2001, the database included 901 projects. Sixty-two per cent of projects had been conducted in Australian capital cities, where approximately 63% of the population reside. Distribution of projects varied between States. In Western Australia and Queensland, 36 and 73 projects had been conducted, respectively, representing approximately two projects per 100 000 people. By comparison, in South Australia and Tasmania approximately seven projects per 100 000 people were recorded, with six per 100 000 people in Victoria and three per 100 000 people in New South Wales. Rural and remote areas of the country had more limited project activity. Conclusions: The mapping of projects by geographical location enabled easy identification of high and low activity areas. Analysis of the types of projects undertaken in each region enabled identification of target groups that had not been involved or services that had not yet been developed. This served as a powerful tool for policy planning and implementation and will be used to support the continued implementation of Australia's policy on the quality use of medicines.
Resumo:
This work demonstrates that the theoretical framework of complex networks typically used to study systems such as social networks or the World Wide Web can be also applied to material science, allowing deeper understanding of fundamental physical relationships. In particular, through the application of the network theory to carbon nanotubes or vapour-grown carbon nanofiber composites, by mapping fillers to vertices and edges to the gap between fillers, the percolation threshold has been predicted and a formula that relates the composite conductance to the network disorder has been obtained. The theoretical arguments are validated by experimental results from the literature.
Resumo:
The success of artificial prosthetic replacements depends on the fixation of the artificial prosthetic component after being implanted in the thighbone. The materials for fixation are subject to mechanical stresses, which originate permanent deformations, incipient cracks and even fatigue fractures. This work shows the possibility of monitoring the mechanical stress over time in prosthesis. In this way, highly sensitive silicon thin-film piezoresistive sensors were developed attached to prosthesis and their results compared with commercial strain gauge sensors. Mechanical stress-strain experiments were performed in compressive mode, during 10,000 cycles. Experimental data was acquired at mechanical vibration frequencies of 0.5 Hz, 1 Hz and 5 Hz, and sent to a computer by means of a wireless link. The results show that there is a decrease in sensitivity of the thin-film silicon piezoresistive sensors when they are attached to the prosthesis, but this decrease does not compromise its monitoring performance. The sensitivity, compared to that of commercial strain gauges, is much larger due to their higher gauge factors (-23.5), when compared to the GFs of commercial sensors (2).
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. This paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. The use of DemSi by a retailer in a situation of energy shortage, is presented. Load reduction is obtained using a consumer based price elasticity approach supported by real time pricing. Non-linear programming is used to maximize the retailer’s profit, determining the optimal solution for each envisaged load reduction. The solution determines the price variations considering two different approaches, price variations determined for each individual consumer or for each consumer type, allowing to prove that the approach used does not significantly influence the retailer’s profit. The paper presents a case study in a 33 bus distribution network with 5 distinct consumer types. The obtained results and conclusions show the adequacy of the used methodology and its importance for supporting retailers’ decision making.