938 resultados para Sun: dynamo
Local numerical modelling of magnetoconvection and turbulence - implications for mean-field theories
Resumo:
During the last decades mean-field models, in which large-scale magnetic fields and differential rotation arise due to the interaction of rotation and small-scale turbulence, have been enormously successful in reproducing many of the observed features of the Sun. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. This new information, however, imposes strict conditions on mean-field models. Moreover, most of the present mean-field models depend on knowledge of the small-scale turbulent effects that give rise to the large-scale phenomena. In many mean-field models these effects are prescribed in ad hoc fashion due to the lack of this knowledge. With large enough computers it would be possible to solve the MHD equations numerically under stellar conditions. However, the problem is too large by several orders of magnitude for the present day and any foreseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calculations which allow a much higher spatial resolution than what can be achieved in direct global calculations. In the present dissertation three aspects of mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested with calculations of isotropic turbulence and hydrodynamic, as well as magnetohydrodynamic, convection. Secondly, even if the mean-field theory is unable to give the required transport coefficients from first principles, it is in some cases possible to compute these coefficients from 3D numerical models in a parameter range that can be considered to describe the main physical effects in an adequately realistic manner. In the present study, the Reynolds stresses and turbulent heat transport, responsible for the generation of differential rotation, were determined along the mixing length relations describing convection in stellar structure models. Furthermore, the alpha-effect and magnetic pumping due to turbulent convection in the rapid rotation regime were studied. The third area of the present study is to apply the local results in mean-field models, which task we start to undertake by applying the results concerning the alpha-effect and turbulent pumping in mean-field models describing the solar dynamo.
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Resumo:
We respond to Dikpati et al.'s criticism of our recent solar dynamo model. A different treatment of the magnetic buoyancy is the most probable reason for their different results.
Resumo:
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to a low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.
Resumo:
The hypothesis that the solar dynamo operates in a thin layer at the bottom of the convection zone is addressed. Recent work on the question whether the magnetic flux can be made to emerge at sunspot latitudes is reviewed. It is concluded that this hypothesis can fit the observational facts only if there is turbulence with a length scale of a few hundred kilometers in and around the dynamo region.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
We confirm that the evidence for the Waldmeier effect WE1 (the anticorrelation between rise times of sunspot cycles and their strengths) and the related effect WE2 (the correlation between rise rates of cycles and their strengths) is found in different kinds of sunspot data. We explore whether these effects can be explained theoretically on the basis of the flux transport dynamo models of sunspot cycles. Two sources of irregularities of sunspot cycles are included in our model: fluctuations in the poloidal field generation process and fluctuations in the meridional circulation. We find WE2 to be a robust result which is produced in different kinds of theoretical models for different sources of irregularities. The Waldmeier effect WE1, on the other hand, arises from fluctuations in the meridional circulation and is found only in the theoretical models with reasonably high turbulent diffusivity which ensures that the diffusion time is not more than a few years.
Resumo:
Attempts in the past to model the irregularities of the solar cycle (such as the Maunder minimum) were based on studies of the nonlinear feedback of magnetic fields on the dynamo source terms. Since the alpha-coefficient is obtained by averaging over the turbulence, it is expected to have stochastic fluctuations, and we show that these fluctuations can explain the irregularities of the solar cycle in a more satisfactory way. We solve the dynamo equations in a slab with a single mode, taking the alpha-coefficient to be constant in space but fluctuating stochastically in time with some given amplitude and given correlation time. The same level of percentile fluctuations (about 10 %) produces no effect on an alpha-omega dynamo, but makes an alpha-2 dynamo completely chaotic. The level of irregularities in an alpha-2-omega dynamo qualitatively agrees with the solar behavior, reinforcing the conclusion of Choudhuri (1990a) that the solar dynamo is of the alpha-2-omega-type. The irregularities are found to increase on increasing either the amplitude or the correlation time of the stochastic fluctuations. The alpha-quenching mechanism tends to make the system stable against the irregularities and hence it is inferred that the alpha-quenching should not be too strong so that the irregularities are not completely suppressed. We also present a simple-minded analysis to understand why the stochastic fluctuations in the alpha-omega, alpha-2-omega and alpha-2 regimes have such different outcomes.
Resumo:
We build on the formulation developed in S. Sridhar and N. K. Singh J. Fluid Mech. 664, 265 (2010)] and present a theory of the shear dynamo problem for small magnetic and fluid Reynolds numbers, but for arbitrary values of the shear parameter. Specializing to the case of a mean magnetic field that is slowly varying in time, explicit expressions for the transport coefficients alpha(il) and eta(iml) are derived. We prove that when the velocity field is nonhelical, the transport coefficient alpha(il) vanishes. We then consider forced, stochastic dynamics for the incompressible velocity field at low Reynolds number. An exact, explicit solution for the velocity field is derived, and the velocity spectrum tensor is calculated in terms of the Galilean-invariant forcing statistics. We consider forcing statistics that are nonhelical, isotropic, and delta correlated in time, and specialize to the case when the mean field is a function only of the spatial coordinate X-3 and time tau; this reduction is necessary for comparison with the numerical experiments of A. Brandenburg, K. H. Radler, M. Rheinhardt, and P. J. Kapyla Astrophys. J. 676, 740 (2008)]. Explicit expressions are derived for all four components of the magnetic diffusivity tensor eta(ij) (tau). These are used to prove that the shear-current effect cannot be responsible for dynamo action at small Re and Rm, but for all values of the shear parameter.
Resumo:
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.
Resumo:
We show that meridional circulation can have a profound influence on dynamo models for the solar cycle. Motivated by the observed tilt angles of sunspot groups we assume that the generation of the poloidal field takes place near the surface, while a shear layer of radial differential rotation produces the toroidal field at the bottom of the convection zone. Both layers are coupled by a circulation with a poleward directed flow in the upper part and an equatorward flow in the deep layers of the convection zone. The circulation forces the toroidal field belts (which are responsible for the surface activity) to move equatorward. This leads to butterfly diagrams in qualitative agreement with the observations, even if the dynamo wave would propagate poleward in the absence of circulation. This result opens the possibility to construct models for the solar cycle which are based on observational data (tilt angles, differential rotation, and meridional circulation).
Resumo:
A mechanism is presented here for the amplification of large-scale nonaxisymmetric magnetic fields as a manifestation of the dynamo effect. We generalize a result on restrictions of dynamo actions due to laminar flow originally derived by Zeldovich, Ruzmaikin, and Sokolov [Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983)]. We show how a screwlike motion having phi and z components of velocity can help to grow a magnetic field. This model postulates a large-scale flow having phi and z components with radial dependences (helical flow). Shear in the radial field, because of a near-flux-freezing condition, causes amplification of the phi component of the magnetic field. The radial and axial components grow due to the presence of turbulent diffusion. The shear in the large scale flow induces an indefinite growth of magnetic field without the a effect; nevertheless, turbulent diffusion forms an important part in the overall mechanism.
Resumo:
The dynamo effect is used to describe the generation of magnetic fields in astrophysical objects. However, no rigorous derivation of the dynamo equation is available. We justify the form of the equation using an Operator Product Expansion (OPE) of the relevant fields. We also calculate the coefficients of the OPE series using a dynamic renormalisation group approach and discuss the time evolution of the initial conditions on the initial seed magnetic field.
Resumo:
We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.