927 resultados para Sum rules
Resumo:
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.
Resumo:
In this work we provide simple and precise parametrizations of the existing πK scattering data from threshold up to 1.6 GeV, which are constrained to satisfy forward dispersion relations as well as three additional threshold sum rules. We also provide phenomenological values of the threshold parameters and of the resonance poles that appear in elastic scattering.
Resumo:
Experiments at Jefferson Lab have been conducted to extract the nucleon spin-dependent structure functions over a wide kinematic range. Higher moments of these quantities provide tests of QCD sum rules and predictions of chiral perturbation theory ($\chi$PT). While precise measurements of $g_{1}^n$, $g_{2}^n$, and $g_1^p$ have been extensively performed, the data of $g_2^p$ remain scarce. Discrepancies were found between existing data related to $g_2$ and theoretical predictions. Results on the proton at large $Q^2$ show a significant deviation from the Burkhardt-Cottingham sum rule, while results for the neutron generally follow this sum rule. The next-to-leading order $\chi$PT calculations exhibit discrepancy with data on the longitudinal-transverse polarizability $\delta_{LT}^n$. Further measurements of the proton spin structure function $g_2^p$ are desired to understand these discrepancies.
Experiment E08-027 (g2p) was conducted at Jefferson Lab in experimental Hall A in 2012. Inclusive measurements were performed with polarized electron beam and a polarized ammonia target to obtain the proton spin-dependent structure function $g_2^p$ at low Q$^2$ region (0.02$<$Q$^2$$<$0.2 GeV$^2$) for the first time. The results can be used to test the Burkhardt-Cottingham sum rule, and also allow us to extract the longitudinal-transverse spin polarizability of the proton, which will provide a benchmark test of $\chi$PT calculations. This thesis will present and discuss the very preliminary results of the transverse asymmetry and the spin-dependent structure functions $g_1^p$ and $g_2^p$ from the data analysis of the g2p experiment .
Resumo:
We present a study where the energy loss function of Ta2O5, initially derived in the optical limit for a limited region of excitation energies from reflection electron energy loss spectroscopy (REELS) measurements, was improved and extended to the whole momentum and energy excitation region through a suitable theoretical analysis using the Mermin dielectric function and requiring the fulfillment of physically motivated restrictions, such as the f- and KK-sum rules. The material stopping cross section (SCS) and energy-loss straggling measured for 300–2000 keV proton and 200–6000 keV helium ion beams by means of Rutherford backscattering spectrometry (RBS) were compared to the same quantities calculated in the dielectric framework, showing an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss function. Based on this assessment, we have also predicted the inelastic mean free path and the SCS of energetic electrons in Ta2O5.
Resumo:
Symmetry restrictions on Raman selection rules can be obtained, quite generally, by considering a Raman allowed transition as the result of two successive dipole allowed transitions, and imposing the usual symmetry restrictions on the dipole transitions. This leads to the same results as the more familiar polarizability theory, but the vibration-rotation selection rules are easier to obtain by this argument. The selection rules for symmetric top molecules involving the (+l) and (-l) components of a degenerate vibrational level with first-order Coriolis splitting are derived in this paper. It is shown that these selection rules depend on the order of the highest-fold symmetry axis Cn, being different for molecules with n=3, n=4, or n ≧ 5; moreover the selection rules are different again for molecules belonging to the point groups Dnd with n even, and Sm with 1/2m even, for which the highest-fold symmetry axes Cn and Sm are related by m=2n. Finally it is shown that an apparent anomaly between the observed Raman and infra-red vibration-rotation spectra of the allene molecule is resolved when the correct selection rules are used, and a value for the A rotational constant of allene is derived without making use of the zeta sum rule.
Resumo:
Principal Topic Although corporate entrepreneurship is of vital importance for long-term firm survival and growth (Zahra and Covin, 1995), researchers still struggle with understanding how to manage corporate entrepreneurship activities. Corporate entrepreneurship consists of three parts: innovation, venturing, and renewal processes (Guth and Ginsberg, 1990). Innovation refers to the development of new products, venturing to the creation of new businesses, and renewal to redefining existing businesses (Sharma, and Chrisman, 1999; Verbeke et al., 2007). Although there are many studies focusing on one of these aspects (cf. Burgelman, 1985; Huff et al., 1992), it is very difficult to compare the outcomes of these studies due to differences in contexts, measures, and methodologies. This is a significant lack in our understanding of CE, as firms engage in all three aspects of CE, making it important to compare managerial and organizational antecedents of innovation, venturing and renewal processes. Because factors that may enhance venturing activities may simultaneously inhibit renewal activities. The limited studies that did empirically compare the individual dimensions (cf. Zahra, 1996; Zahra et al., 2000; Yiu and Lau, 2008; Yiu et al., 2007) generally failed to provide a systematic explanation for potential different effects of organizational antecedents on innovation, venturing, and renewal. With this study we aim to investigate the different effects of structural separation and social capital on corporate entrepreneurship activities. The access to existing and the development of new knowledge has been deemed of critical importance in CE-activities (Floyd and Wooldridge, 1999; Covin and Miles, 2007; Katila and Ahuja, 2002). Developing new knowledge can be facilitated by structurally separating corporate entrepreneurial units from mainstream units (cf. Burgelman, 1983; Hill and Rothaermel, 2003; O'Reilly and Tushman, 2004). Existing knowledge and resources are available through networks of social relationships, defined as social capital (Nahapiet and Ghoshal, 1998; Yiu and Lau, 2008). Although social capital has primarily been studied at the organizational level, it might be equally important at top management level (Belliveau et al., 1996). However, little is known about the joint effects of structural separation and integrative mechanisms to provide access to social capital on corporate entrepreneurship. Could these integrative mechanisms for example connect the separated units to facilitate both knowledge creation and sharing? Do these effects differ for innovation, venturing, and renewal processes? Are the effects different for organizational versus top management team integration mechanisms? Corporate entrepreneurship activities have for example been suggested to take place at different levels. Whereas innovation is suggested to be a more bottom-up process, strategic renewal is a more top-down process (Floyd and Lane, 2000; Volberda et al., 2001). Corporate venturing is also a more bottom-up process, but due to the greater required resource commitments relative to innovation, it ventures need to be approved by top management (Burgelman, 1983). As such we will explore the following key research question in this paper: How do social capital and structural separation on organizational and TMT level differentially influence innovation, venturing, and renewal processes? Methodology/Key Propositions We investigated our hypotheses on a final sample of 240 companies in a variety of industries in the Netherlands. All our measures were validated in previous studies. We targeted a second respondent in each firm to reduce problems with single-rater data (James et al., 1984). We separated the measurement of the independent and the dependent variables in two surveys to create a one-year time lag and reduce potential common method bias (Podsakoff et al., 2003). Results and Implications Consistent with our hypotheses, our results show that configurations of structural separation and integrative mechanisms have different effects on the three aspects of corporate entrepreneurship. Innovation was affected by organizational level mechanisms, renewal by integrative mechanisms on top management team level and venturing by mechanisms on both levels. Surprisingly, our results indicated that integrative mechanisms on top management team level had negative effects on corporate entrepreneurship activities. We believe this paper makes two significant contributions. First, we provide more insight in what the effects of ambidextrous organizational forms (i.e. combinations of differentiation and integration mechanisms) are on venturing, innovation and renewal processes. Our findings show that more valuable insights can be gained by comparing the individual parts of corporate entrepreneurship instead of focusing on the whole. Second, we deliver insights in how management can create a facilitative organizational context for these corporate entrepreneurship activities.
Resumo:
For most of the work done in developing association rule mining, the primary focus has been on the efficiency of the approach and to a lesser extent the quality of the derived rules has been emphasized. Often for a dataset, a huge number of rules can be derived, but many of them can be redundant to other rules and thus are useless in practice. The extremely large number of rules makes it difficult for the end users to comprehend and therefore effectively use the discovered rules and thus significantly reduces the effectiveness of rule mining algorithms. If the extracted knowledge can’t be effectively used in solving real world problems, the effort of extracting the knowledge is worth little. This is a serious problem but not yet solved satisfactorily. In this paper, we propose a concise representation called Reliable Approximate basis for representing non-redundant approximate association rules. We prove that the redundancy elimination based on the proposed basis does not reduce the belief to the extracted rules. We also prove that all approximate association rules can be deduced from the Reliable Approximate basis. Therefore the basis is a lossless representation of approximate association rules.