954 resultados para Sulphur Dioxide
Resumo:
The aim of this thesis is to define effects of lignin separation process on Pulp mill chemical balance especially on sodium/sulphur-balance. The objective is to develop a simulation model with WinGEMS Process Simulator and use that model to simulate the chemical balances and process changes. The literature part explains what lignin is and how kraft pulp is produced. It also introduces to the methods that can be used to extract lignin from black liquor stream and how those methods affect the pulping process. In experimental part seven different cases are simulated with the created simulation model. The simulations are based on selected reference mill that produces 500 000 tons of bleached air-dried (90 %) pulp per year. The simulations include the chemical balance calculation and the estimated production increase. Based on the simulations the heat load of the recovery boiler can be reduced and the pulp production increased when lignin is extracted. The simulations showed that decreasing the waste acid stream intake from the chlorine dioxide plant is an effective method to control the sulphidity level when about 10 % of lignin is extracted. With higher lignin removal rates the in-mill sulphuric acid production has been discovered to be a better alternative to the sulphidity control.
Resumo:
Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.
Resumo:
Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.
Resumo:
Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.
Resumo:
Caryocar brasiliense Camb (Pequi) is a typical Brazilian Cerrado fruit tree. Its fruit is used as a vitamin source for culinary purposes and as a source of oil for the manufacture of cosmetics. C. brasiliense supercritical CO2 extracts exhibit antimicrobial activity against the bacteria Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and also possess antioxidant activity. This study was designed to evaluate the in vitro cytotoxicity and phototoxicity of the supercritical CO2 extract obtained from the leaves of this species. In vitro cytotoxicity and phototoxicity of C. brasiliense supercritical CO2 extracts were assessed using a tetrazolium-based colorimetric assay (XTT) and Neutral Red methods. We found that the C. brasiliense (Pequi) extract obtained by supercritical CO2 extraction did not present cytotoxic and phototoxic hazards. This finding suggests that the extract may be useful for the development of cosmetic and/or pharmaceutical products.
Resumo:
Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.
Resumo:
This study aimed to evaluate the effects of a flavor-containing dentifrice on the formation of volatile sulphur compounds (VSCs) in morning bad breath. A two-step, blinded, crossover, randomized study was carried out in 50 dental students with a healthy periodontium divided into two experimental groups: flavor-containing dentifrice (test) and non-flavor-containing dentifrice (control). The volunteers received the designated dentifrice and a new toothbrush for a 3 X/day brushing regimen for 2 periods of 30 days. A seven-day washout interval was used between the periods. The assessed parameters were: plaque index (PI), gingival index (GI), organoleptic breath scores (ORG), VSC levels (as measured by a portable sulphide monitor) before (H1) and after (H2) cleaning of the tongue, tongue coating (TC) wet weight and BANA test from TC samples. The intra-group analysis showed a decrease in ORG, from 3 to 2, after 30 days for the test group (p < 0.05). The inter-group analysis showed lower values in ORG, H1 and H2 for the test group (p < 0.05). There was no difference between the amount of TC between groups and the presence of flavor also did not interfere in the BANA results between groups (p > 0.05). These findings suggest that a flavor-containing dentifrice seems to prevent VSCs formation in morning bad breath regardless of the amount of TC in periodontally healthy subjects.
Resumo:
Background and Purpose: Carbon dioxide pneumoperitoneum is associated with significant hypercarbia and acidosis. The aim of this study is to evaluate the effects of carbon dioxide and helium pneumoperitoneum on renal function. Materials and Methods: Thirty adult dogs were put randomly into one of three groups ( n = 10 animals each): group A - pneumoperitoneum not performed; group B - CO2 pneumoperitoneum; and group C - helium pneumoperitoneum. The groups were analyzed with consideration given to body weight, hematologic values, hemodynamic parameters ( heart rate, mean arterial pressure, central venous pressure, cardiac output, stroke volume, systemic vascular resistance, pulmonary vascular resistance, left cardiac work index, cardiac index, mean pulmonary artery pressure, and pulmonary capillary wedge pressure), and renal function ( plasma renin activity, urinary output, creatinine clearance, and sodium excretory fraction). Results: An accentuated decrease in urinary output was observed during pneumoperitoneum in groups B and C compared to the control group. In groups B and C, creatinine clearance declined significantly during pneumoperitoneum in comparison to group A, but after deflation a faster recovery of glomerular filtration was noticed for group C, and a significant increase in sodium excretory fraction was seen for group B. On the other hand, in comparison to the control group, group B had a significant increase in plasma renin activity, with late recovery of glomerular function. Conclusion: Helium ameliorates renal alterations when used for pneumoperitoneum, and it might be used for patients with compromised renal function who have to undergo laparoscopic surgery.
Resumo:
Background: We aimed to compare plasma concentrations of carbon dioxide (CO(2)) in dogs that underwent intra- and preperitoneal CO(2) insufflation. Materials and Methods: Thirty dogs were studied. Ten formed a control group, 10 underwent intraperitoneal CO(2) insufflation, and 10 underwent preperitoneal CO(2) insufflation. General anesthesia with controlled ventilation was standardized for all dogs. After stabilizing the anesthesia, blood samples were collected at predetermined times and were sent for immediate gasometric analysis. Analysis of variance was used for comparing variables. Results: The plasma CO(2) concentration in the intraperitoneal insufflation group increased significantly more than in the preperitoneal insufflation group and was significantly greater than in the control group (P < 0.05). The pH values in the intraperitoneal group were lower than in the preperitoneal group (P < 0.05). Conclusion: The data from this study suggest that a greater plasma concentration of CO(2) is achieved by insufflation at constant pressure into the intraperitoneal space than into the preperitoneal space.
Resumo:
Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.
Resumo:
The title 2:1 complex of 3-nitrophenol (MNP) and 4,4'-bipyridyl N, N'-dioxide (DPNO), 2C(6)H(5)NO(3)center dot C(10)H(8)N(2)O(2) or 2MNP center dot DPNO, crystallizes as a centrosymmetric three-component adduct with a dihedral angle of 59.40 (8)degrees between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid-point of the C-C bond linking its aromatic rings). The complex owes its formation to O-H center dot center dot center dot O hydrogen bonds [O center dot center dot center dot O = 2.605 (3) angstrom]. Molecules are linked by intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions forming R(2)(1) (6) and R(2)(2) (10) rings, and R(6)(6) (34) and R(4)(4) (26) macro-rings, all of which are aligned along the [(1) over bar 01] direction, and R(2)(2) (10) and R(2)(1) (7) rings aligned along the [010] direction. The combination of chains of rings along the [(1) over bar 01] and [010] directions generates the three-dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N-O distance [1.325 (2) angstrom] depends not only on the interactions involving the O atom at the N-O group, but also on the structural ordering and additional three-dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(d,p) level is compared with the molecular structure in the solid state.
Resumo:
In the title 2:1 adduct, C(14)H(10)O(4)S(2)center dot 0.5C(10)H(8)N(2)O(2), which arose from an unexpected oxidation of a precursor, the dihedral angle between the aromatic rings in the disulfide is 82.51 (11)degrees. In the crystal, the molecules are linked by O-H center dot center dot center dot O, OH center dot center dot center dot N and C-H center dot center dot center dot O interactions, generating sheets.
Resumo:
Outgassing of carbon dioxide (CO(2)) from rivers and streams to the atmosphere is a major loss term in the coupled terrestrial-aquatic carbon cycle of major low-gradient river systems (the term ""river system"" encompasses the rivers and streams of all sizes that compose the drainage network in a river basin). However, the magnitude and controls on this important carbon flux are not well quantified. We measured carbon dioxide flux rates (F(CO2)), gas transfer velocity (k), and partial pressures (p(CO2)) in rivers and streams of the Amazon and Mekong river systems in South America and Southeast Asia, respectively. F(CO2) and k values were significantly higher in small rivers and streams (channels <100 m wide) than in large rivers (channels >100 m wide). Small rivers and streams also had substantially higher variability in k values than large rivers. Observed F(CO2) and k values suggest that previous estimates of basinwide CO(2) evasion from tropical rivers and wetlands have been conservative and are likely to be revised upward substantially in the future. Data from the present study combined with data compiled from the literature collectively suggest that the physical control of gas exchange velocities and fluxes in low-gradient river systems makes a transition from the dominance of wind control at the largest spatial scales (in estuaries and river mainstems) toward increasing importance of water current velocity and depth at progressively smaller channel dimensions upstream. These results highlight the importance of incorporating scale-appropriate k values into basinwide models of whole ecosystem carbon balance.
Resumo:
The present study approaches the economic and technical evaluation of equivalent carbon dioxide (CO(2) eqv.) capture and storage processes, considered in a proposal case compared to a base case. The base case considers an offshore petroleum production facility, with high CO(2) content (4 vol%) in the composition of the produced gas and both CO(2) and natural gas emissions to the atmosphere, called CO(2) eqv. emissions. The results obtained with this study, by using a Hysys process simulator, showed a CO(2) emission reduction of 65% comparing the proposal case in relation to the base case.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.