945 resultados para Sulfur dioxide.
Resumo:
Abstract A fuzzy linguistic model based on the Mamdani method with input variables, particulate matter, sulfur dioxide, temperature and wind obtained from CETESB with two membership functions each was built to predict the average hospitalization time due to cardiovascular diseases related to exposure to air pollutants in São José dos Campos in the State of São Paulo in 2009. The output variable is the average length of hospitalization obtained from DATASUS with six membership functions. The average time given by the model was compared to actual data using lags of 0 to 4 days. This model was built using the Matlab v. 7.5 fuzzy toolbox. Its accuracy was assessed with the ROC curve. Hospitalizations with a mean time of 7.9 days (SD = 4.9) were recorded in 1119 cases. The data provided revealed a significant correlation with the actual data according to the lags of 0 to 4 days. The pollutant that showed the greatest accuracy was sulfur dioxide. This model can be used as the basis of a specialized system to assist the city health authority in assessing the risk of hospitalizations due to air pollutants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Brazilian wine industry has a remarkable characteristic that distinguishes from other markets, while the foreign market only accepts products originating from European varieties (Vitis vinifera), in Brazil, products originating from American varieties (Vitis labrusca and Vitis bourquina) and hybrids are also accepted. Dry and sweet varietal wines from varieties Bordô (dry and sweet), Isabel (sweet) e Máximo (dry) were analyzed, by the following chemical standard analyses: alcohol content; density; total and reduced dry matter; alcohol/reduced dry extract ratio; reducing sugars; total, volatile and fixed acidity; pH; total and free sulfur dioxide; and energy value. All analyzed wines presented results within the parameters set forth by Brazilian law, a positive fact, once they are commercialized. The varietal wine Máximo presented a low content of total and free sulfur dioxide, which may cause future problems with its sanity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The influence of the temperature and reaction time on the sulfation process of a dolomite is investigated in this paper. The sulfation effectiveness was evaluated and correlated with changes in the physical characteristics of a Brazilian dolomite during the reactive process. Calcination and sulfation experiments were performed under isothermal conditions for dolomite samples with average particle sizes of 545 mu m at temperatures of 750 degrees C, 850 degrees C and 950 degrees C at different times of sulfation. Thermogravimetric tests were applied to establish the reactivity variation of the dolomite in function of the time in the sulfation reaction and evaluate the methodology of the samples preparation. Porosimetry tests were performed to study the pore blockage of dolomite during the sulfation reaction. The highest values of BET surface area were 25.55 m(2)/g, 29.55 m(2)/g and 12.62 m(2)/g for calcined samples and after their sulfation processes, conversions of 51.5%, 61.9% and 42.8% were obtained at 750 degrees C, 850 degrees C and 950 degrees C, respectively. Considering the process as a whole, the best fit was provided by a first-order exponential decay equation. Moreover, the results have shown that it is possible to quantify the decreasing in the dolomite reactivity for sulfur dioxide sorption and understand the changes in the behavior of the sulfation process of limestones when applied to technologies, as fluidized bed combustor, in which sulfur dioxide is present. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Over the last three decades, international agricultural trade has grown significantly. Technological advances in transportation logistics and storage have created opportunities to ship anything almost anywhere. Bilateral and multilateral trade agreements have also opened new pathways to an increasingly global market place. Yet, international agricultural trade is often constrained by differences in regulatory regimes. The impact of “regulatory asymmetry” is particularly acute for small and medium sized enterprises (SMEs) that lack resources and expertise to successfully operate in markets that have substantially different regulatory structures. As governments seek to encourage the development of SMEs, policy makers often confront the critical question of what ultimately motivates SME export behavior. Specifically, there is considerable interest in understanding how SMEs confront the challenges of regulatory asymmetry. Neoclassical models of the firm generally emphasize expected profit maximization under uncertainty, however these approaches do not adequately explain the entrepreneurial decision under regulatory asymmetry. Behavioral theories of the firm offer a far richer understanding of decision making by taking into account aspirations and adaptive performance in risky environments. This paper develops an analytical framework for decision making of a single agent. Considering risk, uncertainty and opportunity cost, the analysis focuses on the export behavior response of an SME in a situation of regulatory asymmetry. Drawing on the experience of fruit processor in Muzaffarpur, India, who must consider different regulatory environments when shipping fruit treated with sulfur dioxide, the study dissects the firm-level decision using @Risk, a Monte Carlo computational tool.
Resumo:
Urban centers significantly contribute to anthropogenic air pollution, although they cover only a minor fraction of the Earth's land surface. Since the worldwide degree of urbanization is steadily increasing, the anthropogenic contribution to air pollution from urban centers is expected to become more substantial in future air quality assessments. The main objective of this thesis was to obtain a more profound insight in the dispersion and the deposition of aerosol particles from 46 individual major population centers (MPCs) as well as the regional and global influence on the atmospheric distribution of several aerosol types. For the first time, this was assessed in one model framework, for which the global model EMAC was applied with different representations of aerosol particles. First, in an approach with passive tracers and a setup in which the results depend only on the source location and the size and the solubility of the tracers, several metrics and a regional climate classification were used to quantify the major outflow pathways, both vertically and horizontally, and to compare the balance between pollution export away from and pollution build-up around the source points. Then in a more comprehensive approach, the anthropogenic emissions of key trace species were changed at the MPC locations to determine the cumulative impact of the MPC emissions on the atmospheric aerosol burdens of black carbon, particulate organic matter, sulfate, and nitrate. Ten different mono-modal passive aerosol tracers were continuously released at the same constant rate at each emission point. The results clearly showed that on average about five times more mass is advected quasi-horizontally at low levels than exported into the upper troposphere. The strength of the low-level export is mainly determined by the location of the source, while the vertical transport is mainly governed by the lifting potential and the solubility of the tracers. Similar to insoluble gas phase tracers, the low-level export of aerosol tracers is strongest at middle and high latitudes, while the regions of strongest vertical export differ between aerosol (temperate winter dry) and gas phase (tropics) tracers. The emitted mass fraction that is kept around MPCs is largest in regions where aerosol tracers have short lifetimes; this mass is also critical for assessing the impact on humans. However, the number of people who live in a strongly polluted region around urban centers depends more on the population density than on the size of the area which is affected by strong air pollution. Another major result was that fine aerosol particles (diameters smaller than 2.5 micrometer) from MPCs undergo substantial long-range transport, with about half of the emitted mass being deposited beyond 1000 km away from the source. In contrast to this diluted remote deposition, there are areas around the MPCs which experience high deposition rates, especially in regions which are frequently affected by heavy precipitation or are situated in poorly ventilated locations. Moreover, most MPC aerosol emissions are removed over land surfaces. In particular, forests experience more deposition from MPC pollutants than other land ecosystems. In addition, it was found that the generic treatment of aerosols has no substantial influence on the major conclusions drawn in this thesis. Moreover, in the more comprehensive approach, it was found that emissions of black carbon, particulate organic matter, sulfur dioxide, and nitrogen oxides from MPCs influence the atmospheric burden of various aerosol types very differently, with impacts generally being larger for secondary species, sulfate and nitrate, than for primary species, black carbon and particulate organic matter. While the changes in the burdens of sulfate, black carbon, and particulate organic matter show an almost linear response for changes in the emission strength, the formation of nitrate was found to be contingent upon many more factors, e.g., the abundance of sulfuric acid, than only upon the strength of the nitrogen oxide emissions. The generic tracer experiments were further extended to conduct the first risk assessment to obtain the cumulative risk of contamination from multiple nuclear reactor accidents on the global scale. For this, many factors had to be taken into account: the probability of major accidents, the cumulative deposition field of the radionuclide cesium-137, and a threshold value that defines contamination. By collecting the necessary data and after accounting for uncertainties, it was found that the risk is highest in western Europe, the eastern US, and in Japan, where on average contamination by major accidents is expected about every 50 years.
Resumo:
Am vertikalen Windkanal der Johannes Gutenberg-Universität Mainz wurden physikalische und chemische Bereifungsexperimente durchgeführt. Dabei lagen die Umgebungstemperaturen bei allen Experimenten zwischen etwa -15 und -5°C und der Flüssigwassergehalt erstreckte sich von 0,9 bis etwa 1,6g/m³, typische Bedingungen für Mischphasenwolken in denen Bereifung stattfindet. Oberflächentemperaturmessungen an wachsenden hängenden Graupelpartikeln zeigten, dass während der Experimente trockene Wachstumsbedingungen herrschten.rnZunächst wurde das Graupelwachstum an in einer laminaren Strömung frei schwebenden Eispartikeln mit Anfangsradien zwischen 290 und 380µm, die mit flüssigen unterkühlten Wolkentröpfchen bereift wurden, studiert. Ziel war es, den Kollektionskern aus der Massenzunahme des bereiften Eispartikels und dem mittleren Flüssigwassergehalt während des Wachstumsexperimentes zu bestimmen. Die ermittelten Werte für die Kollektionskerne der bereiften Eispartikel erstreckten sich von 0,9 bis 2,3cm³/s in Abhängigkeit ihres Kollektorimpulses (Masse * Fallgeschwindigkeit des bereifenden Graupels), der zwischen 0,04 und 0,10gcm/s lag. Bei den Experimenten zeigte sich, dass die hier gemessenen Kollektionskerne höher waren im Vergleich mit Kollektionskernen flüssiger Tropfen untereinander. Aus den aktuellen Ergebnissen dieser Arbeit und der vorhandenen Literaturwerte wurde ein empirischer Faktor entwickelt, der von dem Wolkentröpfchenradius abhängig ist und diesen Unterschied beschreibt. Für die untersuchten Größenbereiche von Kollektorpartikel und flüssigen Tröpfchen können die korrigierten Kollektionskernwerte in Wolkenmodelle für die entsprechenden Größen eingebunden werden.rnBei den chemischen Experimenten zu dieser Arbeit wurde die Spurenstoffaufnahme verschiedener atmosphärischer Spurengase (HNO3, HCl, H2O2, NH3 und SO2) während der Bereifung untersucht. Diese Experimente mussten aus technischen Gründen mit hängenden Eispartikeln, dendritischen Eiskristallen und Schneeflocken, bereift mit flüssigen Wolkenlösungströpfchen, durchgeführt werden.rnDie Konzentrationen der Lösung, aus der die Wolkentröpfchen mit Hilfe von Zweistoffdüsen erzeugt wurden, lagen zwischen 1 und 120mg/l. Für die Experimente mit Ammoniak und Schwefeldioxid wurden Konzentrationen zwischen 1 und 22mg/l verwendet. Das Schmelzwasser der bereiften hängenden Graupel und Schneeflocken wurden ionenchromatographisch analysiert und zusammen mit der bekannten Konzentration der bereifenden Wolkentröpfchen konnte der Retentionskoeffizient für jeden Spurenstoff bestimmt werden. Er gibt die Menge an Spurenstoff an, die bei der Phasenumwandlung von flüssig zu fest in die Eisphase übergeht. Salpetersäure und Salzsäure waren nahezu vollständig retiniert (Mittelwerte der gesamten Experimente entsprechend 99±8% und 100±9%). Für Wasserstoffperoxid wurde ein mittlerer Retentionskoeffizient von 65±17% bestimmt. rnDer mittlere Retentionskoeffizient von Ammoniak ergab sich unabhängig vom Flüssigwassergehalt zu 92±21%, während sich für Schwefeldioxid 53±10% für niedrige und 29±7% für hohe Flüssigphasenkonzentrationen ergaben. Bei einigen der untersuchten Spurenstoffe wurde eine Temperaturabhängigkeit beobachtet und wenn möglich durch Parametrisierungen beschrieben.rn
Resumo:
The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm−3 and 70 μgm−3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm−3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) μgm−3 on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition.
Resumo:
Mount Etna, Italy, is one of the most active volcanoes in the world, and is also regarded as one of the strongest volcanic sources of sulfur dioxide (SO2) emissions to the atmosphere. Since October 2004, an automated ultraviolet (UV) spectrometer network (FLAME) has provided ground-based SO2 measurements with high temporal resolution, providing an opportunity to validate satellite SO2 measurements at Etna. The Ozone Monitoring Instrument (OMI) on the NASA Aura satellite, which makes global daily measurements of trace gases in the atmosphere, was used to compare SO2 amount released by the volcano during paroxysmal lava-fountaining events from 2004 to present. We present the first comparison between SO2 emission rates and SO2 burdens obtained by the OMI transect technique and OMI Normalized Cloud-Mass (NCM) technique and the ground-based FLAME Mini-DOAS measurements. In spite of a good data set from the FLAME network, finding coincident OMI and FLAME measurements proved challenging and only one paroxysmal event provided a good validation for OMI. Another goal of this work was to assess the efficacy of the FLAME network in capturing paroxysmal SO2 emissions from Etna, given that the FLAME network is only operational during daylight hours and some paroxysms occur at night. OMI measurements are advantageous since SO2 emissions from nighttime paroxysms can often be quantified on the following day, providing improved constraints on Etna’s SO2 budget.
Resumo:
Statistical analyses of temporal relationships between large earthquakes and volcanic eruptions suggest seismic waves may trigger eruptions even over great (>1000 km) distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stresses propagated by surface waves and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur-dioxide (SO2) emission rates as a measure of subtle changes in activity. Time series of SO2 emission rates were produced from OMI data for thirteen persistently active volcanoes from 1 October 2004 to 30 September 2010. In order to quantify the affect of earthquakes at teleseismic distances, we modeled surface-wave amplitudes from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and calculated the Peak Dynamic Stress (PDS). We assessed the influence of earthquakes on volcanic activity in two ways: 1) by identifying increases in the SO2 time series data and looking for causative earthquakes and 2) by examining the average emission rate before and after each earthquake. In the first, the SO2 time series for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Next, we generated a catalog of responses based on sustained SO2 emission increases above this baseline. Delay times between each SO2 response and each prior earthquake were analyzed using both the actual earthquake catalog, and a randomly generated catalog of earthquakes. This process was repeated for each volcano. Despite varying multiple parameters, this analysis did not demonstrate a clear relationship between earthquake-generated PDS and SO2 emission. However, the second analysis, which was based on the occurrence of large earthquakes indicated a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with very open systems included in this study, Ambrym, Gaua, Villarrica, Erta Ale and, Turrialba, showed a clear response to dynamic stress while the volcanoes with more closed systems, Merapi, Semeru, Fuego, Pacaya, and Bagana, showed no response.
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.
Resumo:
In this report, we attempt to define the capabilities of the infrared satellite remote sensor, Multifunctional Transport Satellite-2 (MTSAT-2) (i.e. a geosynchronous instrument), in characterizing volcanic eruptive behavior in the highly active region of Indonesia. Sulfur dioxide data from NASA's Ozone Monitoring Instrument (OMI) (i.e. a polar orbiting instrument) are presented here for validation of the processes interpreted using the thermal infrared datasets. Data provided from two case studies are analyzed specifically for eruptive products producing large thermal anomalies (i.e. lava flows, lava domes, etc.), volcanic ash and SO2 clouds; three distinctly characteristic and abundant volcanic emissions. Two primary methods used for detection of heat signatures are used and compared in this report including, single-channel thermal radiance (4-µm) and the normalized thermal index (NTI) algorithm. For automated purposes, fixed thresholds must be determined for these methods. A base minimum detection limit (MDL) for single-channel thermal radiance of 2.30E+05 Wm- 2sr-1m-1 and -0.925 for NTI generate false alarm rates of 35.78% and 34.16%, respectively. A spatial comparison method, developed here specifically for use in Indonesia and used as a second parameter for detection, is implemented to address the high false alarm rate. For the single-channel thermal radiance method, the utilization of the spatial comparison method eliminated 100% of the false alarms while maintaining every true anomaly. The NTI algorithm showed similar results with only 2 false alarms remaining. No definitive difference is observed between the two thermal detection methods for automated use; however, the single-channel thermal radiance method coupled with the SO2 mass abundance data can be used to interpret volcanic processes including the identification of lava dome activity at Sinabung as well as the mechanism for the dome emplacement (i.e. endogenous or exogenous). Only one technique, the brightness temperature difference (BTD) method, is used for the detection of ash. Trends of ash area, water/ice area, and their respective concentrations yield interpretations of increased ice formation, aggregation, and sedimentation processes that only a high-temporal resolution instrument like the MTSAT-2 can analyze. A conceptual model of a secondary zone of aggregation occurring in the migrating Kelut ash cloud, which decreases the distal fine-ash component and hazards to flight paths, is presented in this report. Unfortunately, SO2 data was unable to definitively reinforce the concept of a secondary zone of aggregation due to the lack of a sufficient temporal resolution. However, a detailed study of the Kelut SO2 cloud is used to determine that there was no climatic impacts generated from this eruption due to the atmospheric residence times and e-folding rate of ~14 days for the SO2. This report applies the complementary assets offered by utilizing a high-temporal and a high-spatial resolution satellite, and it demonstrates that these two instruments can provide unparalleled observations of dynamic volcanic processes.
Resumo:
Mt Etna's activity has increased during the last decade with a tendency towards more explosive eruptions that produce paroxysmal lava fountains. From January 2011 to April 2012, 25 lava fountaining episodes took place at Etna's New South-East Crater (NSEC). Improved understanding of the mechanism driving these explosive basaltic eruptions is needed to reduce volcanic hazards. This type of activity produces high sulfur dioxide (SO2) emissions, associated with lava flows and ash fall-out, but to date the SO2 emissions associated with Etna's lava fountains have been poorly constrained. The Ultraviolet (UV) Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua were used to measure the SO2 loadings. Ground-based data from the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC) L-band Doppler radar, VOLDORAD 2B, used in collaboration with the Italian National Institute of Geophysics and Volcanology in Catania (INGV-CT), also detected the associated ash plumes, giving precise timing and duration for the lava fountains. This study resulted in the first detailed analysis of the OMI and AIRS SO2 data for Etna's lava fountains during the 2011-2012 eruptive cycle. The HYSPLIT trajectory model is used to constrain the altitude of the observed SO2 clouds, and results show that the SO2 emission usually coincided with the lava fountain peak intensity as detected by VOLDORAD. The UV OMI and IR AIRS SO2 retrievals permit quantification of the SO2 loss rate in the volcanic SO2 clouds, many of which were tracked for several days after emission. A first attempt to quantitatively validate AIRS SO2 retrievals with OMI data revealed a good correlation for high altitude SO2 clouds. Using estimates of the emitted SO2 at the time each paroxysm, we observe a correlation with the inter-paroxysm repose time. We therefore suggest that our data set supports the collapsing foam (CF) model [1] as driving mechanism for the paroxysmal events at the NSEC. Using VOLDORAD-based estimates of the erupted magma mass, we observe a large excess of SO2 in the eruption clouds. Satellite measurements indicate that SO2 emissions from Etnean lava fountains can reach the lower stratosphere and hence could pose a hazard to aviation. [1] Parfitt E.A (2004). A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 134, 77-107.
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present
Resumo:
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.