980 resultados para Sulfate de déhydroépiandrostérone (DHEAS)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude evolution of ettringite and gypsum in hydrated Portland cement mortars due to sulfate attack was detected by X-ray powder diffraction. The influences of sulfate concentration and water-to-cement ratio on the evolution of ettringite and gypsum were investigated. Experimental results show that the magnitude of ettringite formation in sodium sulfate solution follows a three-stage process, namely, the 'penetration period', 'enhance period of strength', and 'macro-crack period'. The cracking of concrete materials is mainly attributed to the effect of ettringite. The gypsum formations occurred in two stages, the 'latent period' and the 'accelerated period'. The gypsum formation including ettringite formation was relative to the linear expansion of mortars to some extend. Both water-to-cement ratio and sulfate concentration play important roles in the evolution of ettringite and gypsum. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparin has been used as an anticoagulant drug for more than 70 years. The global distribution of contaminated heparin in 2007, which resulted in adverse clinical effects and over 100 deaths, emphasizes the necessity for safer alternatives to animal-sourced heparin. The structural complexity and heterogeneity of animal-sourced heparin not only impedes safe access to these biologically active molecules, but also hinders investigations on the significance of structural constituents at a molecular level. Efficient methods for preparing new synthetic heparins with targeted biological activity are necessary not only to ensure clinical safety, but to optimize derivative design to minimize potential side effects. Low molecular weight heparins have become a reliable alternative to heparin, due to their predictable dosages, long half-lives, and reduced side effects. However, heparin oligosaccharide synthesis is a challenging endeavor due to the necessity for complex protecting group manipulation and stereoselective glycosidic linkage chemistry, which often result in lengthy synthetic routes and low yields. Recently, chemoenzymatic syntheses have produced targeted ultralow molecular weight heparins with high-efficiency, but continue to be restricted by the substrate specificities of enzymes.

To address the need for access to homogeneous, complex glycosaminoglycan structures, we have synthesized novel heparan sulfate glycopolymers with well-defined carbohydrate structures and tunable chain length through ring-opening metathesis polymerization chemistry. These polymers recapitulate the key features of anticoagulant heparan sulfate by displaying the sulfation pattern responsible for heparin’s anticoagulant activity. The use of polymerization chemistry greatly simplifies the synthesis of complex glycosaminoglycan structures, providing a facile method to generate homogeneous macromolecules with tunable biological and chemical properties. Through the use of in vitro chromogenic substrate assays and ex vivo clotting assays, we found that the HS glycopolymers exhibited anticoagulant activity in a sulfation pattern and length-dependent manner. Compared to heparin standards, our short polymers did not display any activity. However, our longer polymers were able to incorporate in vitro and ex vivo characteristics of both low-molecular-weight heparin derivatives and heparin, displaying hybrid anticoagulant properties. These studies emphasize the significance of sulfation pattern specificity in specific carbohydrate-protein interactions, and demonstrate the effectiveness of multivalent molecules in recapitulating the activity of natural polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate (HS) glycosaminoglycans participate in critical biological processes by modulating the activity of a diverse set of protein binding partners. Such proteins include all known members of the chemokine superfamily, which are thought to guide the migration of distinct subsets of immune cells through their interactions with HS proteoglycans on endothelial cell surfaces. Animal-derived heparin polysaccharides have been shown to reduce inflammation levels through the inhibition of HS-chemokine interactions; however, the clinical usage of heparin as an anti-inflammatory drug is hampered by its anticoagulant activity and potential risk for side effects, such as heparin-induced thrombocytopenia (HIT).

Here, we describe an expedient, divergent synthesis to prepare defined glycomimetics of HS that recapitulate the macromolecular structure and biological activity of natural HS glycosaminoglycans. Our synthetic approach uses a core disaccharide precursor to generate a library of four differentially sulfated polymers. We show that a trisulfated glycopolymer antagonizes the chemotactic activities of pro-inflammatory chemokine RANTES with similar potency as heparin polysaccharide, without potentiating the anticoagulant activities of antithrombin III. The same glycopolymer also inhibited the homeostatic chemokine SDF-1 with significantly more efficacy than heparin. Our work offers a general strategy for modulating chemokines and dissecting the pleiotropic functions of HS/heparin through the presentation of defined sulfation motifs within multivalent polymeric scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of organotin compounds and copper, commonly used as antifouling agent, were studied on Mercenaria mercernaria larvae. They were reared under usual hatchery conditions until they reached 190 um in diameter. The larvae were subjected to four compounds, tributylin chloride (TBT), monobutyltin chloride (MBT), trimethyltin chloride (TMT), cupric sulfate (CuSo4) plus control. Mortality was measured at 24, 48 h, and 96h. Behavioral and/or metamorphic changes were recorded in triplicate at 24-48 and 96 h. The appearance in swimming larvae of a functional foot was considered a sign of competence to set and was recorded as a "pediveliger". Swimming larvae were considered as larvae that have not yet reached their total development and they were recorded as "swimming". Larvae that did not show foot or swimming activity and were static but alive on the bottom were recorded as "bottom". TBT was found to completely inhibit swimming activity at sublethal concentrations throughout the period of observation. Copper and MBT inhibited swimming from 48 h, TMT did not inhibit swimming activity at any of the times recorded. The four compounds ranked in order of decreasing toxicity were TBT>TMT>CU>MBT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the stimulus of the very high international market value of penaeid shrimp, new pond areas for shrimp farming are rapidly being added in Bangladesh. Unfortunately, this expansion is occurring with the loss of some natural mangrove forests and with soils and sediments that are far from ideal for aquaculture. In this study, two representative shrimp farming areas were surveyed and pH, in profile depth, was recorded. It was found that the shrimp farming areas of the Chakaria Sundarban are more acidic than those of the Khulna-Satkhira region due to the acid sulfate soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is used to deter the growth of bacterial, fungal and protozoan disease organism in fishes. Zoeae (Z SUB-1 ), myses (M SUB-1 ) and postlarvae (P SUB-1 ) were exposed to copper sulfate at concentrations of 0 . 025, 0 . 05, 0 . 75, 0 . 1 and 0 . 2 ppm from 24 to 96 hours. The number of surviving larvae were counted at the end of each 24-hour period and the percentage of survival is determined for each dose level. The LC SUB-50 for each of the larval stages was interpolated from the data whenever possible. Three trials with 2 replicates per trial were conducted. The physico-chemical characteristics of the bath taken before and at the end of the experimental period show insignificant differences between initial and final values in each trial. Results indicate that mortality rates of all larval stages increased with exposure time and that mortality rates of the experimental group is higher than the control. Interpolation of the LC SUB-50 is possible only for the 48-h and 72-h exposure times for both zoeae and myses and for the 48-h exposure time for the postlarvae. This is due to the high survival percentage of the 24-h group and the low survival percentage (below 50%) of the larvae exposed for 96 hours. The 48-hour LC SUB-50 for Z SUB-1 , M SUB-1 and P SUB-1 are 0 . 225, 0 . 350 and 0 . 125 ppm respectively. Postlarvae seem to be more sensitive than either of the 2 larval stages having a lower 48-h LC SUB-50 and a low survival rate after 72 hours. The larvae were observed to lose their balance and were lethargic, producing few swimming movements so that they were mostly confined to the bottom of the aquaria. Moribund larvae observed under the microscope had a faster but weak heartbeat compared to healthy larvae. Slight or complete loss of feeding ability indicated by empty guts and delayed molting of Z SUB-1 to Z SUB-2 were also noted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new sulfur-containing guanidino derivative, halichondria sulfonic acid (1) showing anti-HIV-1 activity, and halistanol trisulfate (2) with anti-tumor activity have been isolated from the marine sponge Halichondria rugosa Ridley & Dendy collected in the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium rutin sulfate (SRS) is a sulfated rutin modified from the natural flavonol glycoside rutin. Here, we investigated its in vitro anti-HIV and -HSV activities and its cytotoxic profile. Fifty percent inhibitory concentration (IC50) values of SRS against HIV-1 X4 virus IIIB, HIV-1 R5 isolates Ada-M and Ba-L were 2.3 +/- 0.2, 4.5 +/- 2.0 and 8.5 +/- 3.8 mu M with a selectivity index (SI) of 563, 575 and 329, respectively. Its IC50 against primary R5 HIV-1 isolate from Yunnan province in China was 13.1 +/- 5.5 mu M, with a Sl of 197. In contrast, unsulfated rutin had no activity against any of the HIV-1 isolates tested. Further study indicated that SRS blocked viral entry and virus-cell fusion likely through interacting with the HIV- I envelope glycoprotein. SRS also demonstrated some activity against human herpes simplex virus (HSV) with an IC50 of 88.3 +/- 0.1 mu M and a Sl of 30. The 50% cytotoxicity concentration (CC50) of SRS was >3.0 mM, as determined in human genital ME 180, HeLa and primary human foreskin fibroblast cells. Minimum inhibitory concentration of SRS for vaginal lactobacilli was >3.0 mM. These results collectively indicate that SRS represents a novel candidate for anti-HIV-1/HSV microbicide development. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis behaviors of polyferric sulfate (PFS) and ferric sulfate (FS) under conditions similar to raw wastewater were investigated and the coagulation of biologically pretreated molasses wastewater using PFS and FS was evaluated by studying coagulation efficiency, zeta potential and microscopic surface morphology of flocs. Experimental results show that the hydrolysis behavior of PFS is different from that of FS on the basis of ferron assay. In the case of FS, fast-reacting Fe(III) polymers were the dominant polynuclear species while large fraction of slow-reacting iron polymers is present in PFS. Despite slightly fewer dosages of PFS required as compared to FS, there is no marked difference in the coagulation of molasses effluent between PFS and FS, especially at the optimum dosages. Both coagulants destabilize organic compounds predominantly through charge neutralization-precipitation mechanism. Hydrolysis rate of PFS in synthetic solution is appreciably different from that in raw wastewater. This may due to the effect of sulfate anion introduced as counter-ion as well as depolymerization of larger polymeric Fe(III) species by the organic ligands present in molasses effluent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental sediments and water from shallow, eutrophic Dianchi Lakes were treated in a controlled laboratory microcosm using different chemicals under different anoxic levels. This study revealed that the polyaluminum chloride (PAC) was able to inhibit the phosphorus release and decrease the UV254 value at any anoxic level. When the DO concentrations were between 0.76-0.95 mg(.) L-1, the UV(254)value, total phosphorus (TP), and total dissolved phosphorus (TDP) in the water column were decreased by 71.93%, 87.12% and 64.24% respectively. The UV254, TP, and TDP were also decreased by 72.94%, 70.87% and 50.76% respectively at the levels of 4.56-5.32mg(.)L(-1) of DO concentrations. The treatment effects of TP and TDP in the water column using copper sulfate however were not as efficient as the PAC treatment. The UV254 value was increased with the addition of copper sulfate at every anoxic level tested but the chlorophyll-a (Chl-a) content was decreased rapidly and efficiently by copper sulfate more than the treatment by PAC. When the DO concentrations were 0.76-0.86mg(.)L(-1) and 4.75-5.14mg(.)L(-1), the Chl-a concentrations were decreased by 84.87% and 75.07% respectively through copper sulfate treatment. With additions of PAC and copper sulfate, the phosphorus fractions in sediments were shifted forward to the favorable shapes that have little ability of release. The TP concentrations in sediments were increased after treatment via PAC and copper sulfate. Under anoxic conditions, most of the BD-P (Fe-P) to NaOH-P (Al-P) was converted using the recommended PAC dose in BD-P rich sediment. Similar to the PAC, the copper sulfate also could flocculate the exchange phosphorus from sediment to overlying water. Overall though, the effects of copper sulfate treatment were not better than that of the PAC.