980 resultados para Sugarcane spirit
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.
Resumo:
Governments are promoting biofuels and the resulting changes in land use and crop reallocation to biofuels production have raised concerns about impacts on environment and food security. The promotion of biofuels has also been questioned based on suggested marginal contribution to greenhouse gas emissions reduction, partly due to induced land use change causing greenhouse gas emissions. This study reports how the expansion of sugarcane in Brazil during 1996-2006 affected indicators for environment, land use and economy. The results indicate that sugarcane expansion did not in general contribute to direct deforestation in the traditional agricultural region where most of the expansion took place. The amount of forests on farmland in this area is below the minimum stated in law and the situation did not change over the studied period. Sugarcane expansion resulted in a significant reduction of pastures and cattle heads and higher economic growth than in neighboring areas. It could not be established to what extent the discontinuation of cattle production induced expansion of pastures in other areas, possibly leading to indirect deforestation. However, the results indicate that a possible migration of the cattle production reached further than the neighboring of expansion regions. Occurring at much smaller rates, expansion of sugarcane in regions such as the Amazon and the Northeast region was related to direct deforestation and competition with food crops, and appear not to have induced economic growth. These regions are not expected to experience substantial increases of sugarcane in the near future, but mitigating measures are warranted.
Resumo:
A new species of eriophyoid mite, belonging in the genus Abacarus Keifer (Eriophyidae), causing damage to sugarcane, Saccharum officinarum L. (Poaceae), in Costa Rica is illustrated and described. Abacarus doctus n. sp. is the only eriophyoid species recorded so far with a tibial seta (l`) on the second pair of legs, an unexpected characteristic observed for the first time in the superfamily Eriophyoidea. Remarks on the phylogenetic and taxonomical aspects related to the presence of this seta are presented. Damage symptoms caused by this mite are presented as well as a key for Abacarus species described from sugarcane. In addition, the need to apply biosecurity procedures during sugarcane germplasm exchange to avoid dissemination of the new mite species is discussed.
Resumo:
The present work reports amounts of flavonoids and phenylpropanoids of culms of three sugarcane varieties and of raw juice, syrup, molasse and VHP sugar. The antioxidant activity of those materials was evaluated by the DPPH and beta-carotene/linoleic acid methods. The predominant phenolics in culms were phenylpropanoids (caffeic, chlorogenic and coumaric acids), while flavones (apigenin, tricin and luteolin derivatives) appeared in lower amounts. Differences were noted either among phenolic profiles of sugarcane culms or between culms and sugarcane products. The antioxidant activities of solutions from most samples were similar or higher than a 80 mu M Trolox solution. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the beta-glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.
Resumo:
Myriogenospora atramentosa has been found on lemongrass (Cymbopogon citratus) and sugarcane (Saccharum interspecific hybrids) in Queensland. These are the first records of this fungus outside of the Americas.
Resumo:
This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in discriminating sugarcane areas affected by 'orange rust' ( Puccinia kuehnii ) disease. Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf internal structure, and leaf water content, were generated from an image acquired over Mackay, Queensland, Australia. Discriminant function analysis was used to select an optimum set of indices based on their correlations with the discriminant function. The predictive ability of each index was also assessed based on the accuracy of classification. Results demonstrated that Hyperion imagery can be used to detect orange rust disease in sugarcane crops. While some indices that only used visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-affected areas. The newly formulated 'Disease-Water Stress Indices' (DWSI-1=R800/R1660; DSWI-2=R1660/R550; DWSI-5=(R800+R550)/(R1660+R680)) produced the largest correlations, indicating their superior ability to discriminate sugarcane areas affected by orange rust disease.
Resumo:
The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.
Resumo:
Streams located in areas of sugarcane cultivation receive high concentrations of metal ions from soils of the adjacent areas causing accumulation of metals in the aquatic sediment. This impact results in environmental problems and leads to bioaccumulation of metal ions in aquatic organisms. In the present study, metal concentrations in different predatory insects were studied in streams near sugarcane cultivation and compared to reference sites. Possible utilisation of predatory insects as bioindicators of metal contamination due to sugarcane cultivation from 13 neotropical streams was evaluated. Ion concentrations of Al, Cd, Cr, Cu, Zn, Fe, and Mn in adult Belostomatidae (Hemiptera) and in larvae of Libellulidae (Odonata) were analysed. Nine streams are located in areas with sugarcane cultivation, without riparian vegetation (classified as impacted area) and four streams were located in forested areas (reference sites). Metal concentrations in insects were higher near sugarcane cultivations than in control sites. Cluster analysis, complemented by an ANOSIM test, clearly showed that these insect groups are good potential bioindicators of metal contamination in streams located in areas with sugarcane cultivation and can be used in monitoring programmes. We also conclude that Libellulidae appeared to accumulate higher concentrations of metals than Belostomatidae.
Resumo:
Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.
Resumo:
An efficient system is now in place for improving diverse sugarcane cultivars by genetic transformation, that is, the insertion of useful new genes into single cells followed by the regeneration of genetically modified (transgenic) plants. The method has already been used to introduce genes for resistance to several major diseases, insect pests and a herbicide, Field testing has begun, and research is underway to identify other genes for increased environmental stress resistance, agronomic efficiency and yield of sucrose or other valuable products. Experience in other crops has shown that genetically improved varieties which provide genuine environmental and consumer benefits are welcomed by producers and consumers. Substantial research is still needed, but these new gene technologies will reshape the sugar industry and determine the international competitive efficiency of producers.
Resumo:
Albicidin phytotoxins are pathogenicity factors in a devastating disease of sugarcane known as leaf scald, caused by Xanthomonas albilineans. A gene (albD) from Pantoea dispersa has been cloned and sequenced and been shown to code for a peptide of 235 amino acids that detoxifies albicidin, The gene shows no significant homology at the DNA or protein level to any known sequence, but the gene product contains a GxSxG motif that is conserved in serine hydrolases, The AlbD protein, purified to homogeneity by means of a glutathione S-transferase gene fusion system, showed strong esterase activity on p-nitrophenyl butyrate and released hydrophilic products during detoxification of albicidins. AlbD hydrolysis of p-nitrophenyl butyrate and detoxification of albicidins required no complex cofactors, Both processes were strongly inhibited by phenylmethylsulfonyl fluoride, a serine enzyme inhibitor, These data strongly suggest that AlbD is an albicidin hydrolase, The enzyme detoxifies albicidins efficiently over a pH range from 5.8 to 8.0, with a broad temperature optimum from 15 to 35 degrees C, Expression of albD in transformed X. albilineans strains abolished the capacity to release albicidin toxins and to incite disease symptoms in sugarcane, The gene is a promising candidate for transfer into sugarcane to confer a form of disease resistance.