968 resultados para Sugarcane - Juice clarification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this experimental study the permeability of Australian bagasse chemical pulps obtained from different bagasse fractions were measured in a simple permeability cell and the results compared to one another as well as to eucalypt, Argentinean bagasse and pine pulps. The pulps were characterised in terms of the permeability parameters, the specific surface area, Sv, and the swelling factor, α. It was found that the bagasse fraction used affects these parameters. Fractionation of whole bagasse prior to pulping produced pulps that have permeability properties that compare favourably with eucalypt pulp. The values of Sv and α for bagasse pulp also depend on whether a constant or a variable Kozeny factor is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane orange rust, caused by Puccinia kuehnii, was once considered a minor disease in the Australian sugar industry. However, in 2000 a new race of the pathogen devastated the high-performing sugarcane cultivar Q124, and caused the industry Aus$150–210 million in yield losses. At the time of the epidemic, very little was known about the genetic and pathogenic diversity of the fungus in Australia and neighbouring sugar industries. DNA sequence data from three rDNA regions were used to determine the genetic relationships between isolates within two P. kuehnii collections. The first collection comprised only recent Australian field isolates and limited sequence variation was detected within this population. In the second study, Australian isolates were compared with isolates from Papua New Guinea, Indonesia, China and historical herbarium collections. Greater sequence variation was detected in this collection and phylogenetic analyses grouped the isolates into three clades. All isolates from commercial cane fields clustered together including the recent Australianfield isolates and the Australian historical isolate from 1898.The other two clades included rust isolates from wild and garden canes in Indonesia and PNG. These rusts appeared morphologically similar to P. kuehnii and could potentially pose a quarantine threat to the Australian sugar industry. The results have revealed greater diversity in sugarcane rusts than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental work is complemented by modelling work. Both the steady-state and dynamic behaviour of pulp pads are evaluated in the experimental and modelling components of this project. Bagasse, the fibrous residue that remains after sugar is extracted from sugarcane, is normally burnt in Australia to generate steam and electricity for the sugar factory. A study into bagasse pulp was motivated by the possibility of making highly value-added pulp products from bagasse for the financial benefit of sugarcane millers and growers. The bagasse pulp and paper industry is a multibillion dollar industry (1). Bagasse pulp could replace eucalypt pulp which is more widely used in the local production of paper products. An opportunity exists for replacing the large quantity of mainly generic paper products imported to Australia. This includes 949,000 tonnes of generic photocopier papers (2). The use of bagasse pulp for paper manufacture is the main application area of interest for this study. Bagasse contains a large quantity of short parenchyma cells called ‘pith’. Around 30% of the shortest fibres are removed from bagasse prior to pulping. Despite the ‘depithing’ operations in conventional bagasse pulp mills, a large amount of pith remains in the pulp. Amongst Australian paper producers there is a perception that the high quantity of short fibres in bagasse pulp leads to poor filtration behaviour at the wet-end of a paper machine. Bagasse pulp’s poor filtration behaviour reduces paper production rates and consequently revenue when compared to paper production using locally made eucalypt pulp. Pulp filtration can be characterised by two interacting factors; permeability and compressibility. Surprisingly, there has previously been very little rigorous investigation into neither bagasse pulp permeability nor compressibility. Only freeness testing of bagasse pulp has been published in the open literature. As a result, this study has focussed on a detailed investigation of the filtration properties of bagasse pulp pads. As part of this investigation, this study investigated three options for improving the permeability and compressibility properties of Australian bagasse pulp pads. Two options for further pre-treating depithed bagasse prior to pulping were considered. Firstly, bagasse was fractionated based on size. Two bagasse fractions were produced, ‘coarse’ and ‘medium’ bagasse fractions. Secondly, bagasse was collected after being processed on two types of juice extraction technology, i.e. from a sugar mill and from a sugar diffuser. Finally one method of post-treating the bagasse pulp was investigated. The effects of chemical additives, which are known to improve freeness, were also assessed for their effect on pulp pad permeability and compressibility. Pre-treated Australian bagasse pulp samples were compared with several benchmark pulp samples. A sample of commonly used kraft Eucalyptus globulus pulp was obtained. A sample of depithed Argentinean bagasse, which is used for commercial paper production, was also obtained. A sample of Australian bagasse which was depithed as per typical factory operations was also produced for benchmarking purposes. The steady-state pulp pad permeability and compressibility parameters were determined experimentally using two purpose-built experimental rigs. In reality, steady-state conditions do not exist on a paper machine. The permeability changes as the sheet compresses over time. Hence, a dynamic model was developed which uses the experimentally determined steady-state permeability and compressibility parameters as inputs. The filtration model was developed with a view to designing pulp processing equipment that is suitable specifically for bagasse pulp. The predicted results of the dynamic model were compared to experimental data. The effectiveness of a polymeric and microparticle chemical additives for improving the retention of short fibres and increasing the drainage rate of a bagasse pulp slurry was determined in a third purpose-built rig; a modified Dynamic Drainage Jar (DDJ). These chemical additives were then used in the making of a pulp pad, and their effect on the steady-state and dynamic permeability and compressibility of bagasse pulp pads was determined. The most important finding from this investigation was that Australian bagasse pulp was produced with higher permeability than eucalypt pulp, despite a higher overall content of short fibres. It is thought this research outcome could enable Australian paper producers to switch from eucalypt pulp to bagasse pulp without sacrificing paper machine productivity. It is thought that two factors contributed to the high permeability of the bagasse pulp pad. Firstly, thicker cell walls of the bagasse pulp fibres resulted in high fibre stiffness. Secondly, the bagasse pulp had a large proportion of fibres longer than 1.3 mm. These attributes helped to reinforce the pulp pad matrix. The steady-state permeability and compressibility parameters for the eucalypt pulp were consistent with those found by previous workers. It was also found that Australian pulp derived from the ‘coarse’ bagasse fraction had higher steady-state permeability than the ‘medium’ fraction. However, there was no difference between bagasse pulp originating from a diffuser or a mill. The bagasse pre-treatment options investigated in this study were not found to affect the steady-state compressibility parameters of a pulp pad. The dynamic filtration model was found to give predictions that were in good agreement with experimental data for pads made from samples of pretreated bagasse pulp, provided at least some pith was removed prior to pulping. Applying vacuum to a pulp slurry in the modified DDJ dramatically reduced the drainage time. At any level of vacuum, bagasse pulp benefitted from chemical additives as quantified by reduced drainage time and increased retention of short fibres. Using the modified DDJ, it was observed that under specific conditions, a benchmark depithed bagasse pulp drained more rapidly than the ‘coarse’ bagasse pulp. In steady-state permeability and compressibility experiments, the addition of chemical additives improved the pad permeability and compressibility of a benchmark bagasse pulp with a high quantity of short fibres. Importantly, this effect was not observed for the ‘coarse’ bagasse pulp. However, dynamic filtration experiments showed that there was also a small observable improvement in filtration for the ‘medium’ bagasse pulp. The mechanism of bagasse pulp pad consolidation appears to be by fibre realignment. Chemical additives assist to lubricate the consolidation process. This study was complemented by pulp physical and chemical property testing and a microscopy study. In addition to its high pulp pad permeability, ‘coarse’ bagasse pulp often (but not always) had superior physical properties than a benchmark depithed bagasse pulp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rodenticide use in agriculture can lead to the secondary poisoning of avian predators. Currently the Australian sugarcane industry has two rodenticides, Racumin® and Rattoff®, available for in-crop use but, like many agricultural industries, it lacks an ecologically-based method of determining the potential secondary poisoning risk the use of these rodenticides poses to avian predators. The material presented in this thesis addresses this by: a. determining where predator/prey interactions take place in sugar producing districts; b. quantifying the amount of rodenticide available to avian predators and the probability of encounter; and c. developing a stochastic model that allows secondary poisoning risk under various rodenticide application scenarios to be investigated. Results demonstrate that predator/prey interactions are highly constrained by environmental structure. Rodents used crops that provided high levels of canopy cover and therefore predator protection and poorly utilised open canopy areas. In contrast, raptors over-utilised areas with low canopy cover and low rodent densities, but which provided high accessibility to prey. Given this pattern of habitat use, and that industry baiting protocols preclude rodenticide application in open canopy crops, these results indicate that secondary poisoning can only occur if poisoned rodents leave closed canopy crops and become available for predation in open canopy areas. Results further demonstrate that after in-crop rodenticide application, only a small proportion of rodents available in open areas are poisoned and that these rodents carry low levels of toxicant. Coupled with the low level of rodenticide use in the sugar industry, the high toxic threshold raptors have to these toxicants and the low probability of encountering poisoned rodents, results indicate that the risk of secondary poisoning events occurring is minimal. A stochastic model was developed to investigate the effect of manipulating factors that might influence secondary poisoning hazard in a sugarcane agro-ecosystem. These simulations further suggest that in all but extreme scenarios, the risk of secondary poisoning is also minimal. Collectively, these studies demonstrate that secondary poisoning of avian predators associated with the use of the currently available rodenticides in Australian sugar producing districts is minimal. Further, the ecologically-based method of assessing secondary poisoning risk developed in this thesis has broader applications in other agricultural systems where rodenticide use may pose risks to avian predators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A membrane filtration plant using suitable micro or ultra-filtration membranes has the potential to significantly increase pan stage capacity and improve sugar quality. Previous investigations by SRI and others have shown that membranes will remove polysaccharides, turbidity and colloidal impurities and result in lower viscosity syrups and molasses. However, the conclusion from those investigations was that membrane filtration was not economically viable. A comprehensive assessment of current generation membrane technology was undertaken by SRI. With the aid of two pilot plants provided by Applexion and Koch Membrane Systems, extensive trials were conducted at an Australian factory using clarified juice at 80–98°C as feed to each pilot plant. Conditions were varied during the trials to examine the effect of a range of operating parameters on the filtering characteristics of each of the membranes. These parameters included feed temperature and pressure, flow velocity, soluble solids and impurity concentrations. The data were then combined to develop models to predict the filtration rate (or flux) that could be expected for nominated operating conditions. The models demonstrated very good agreement with the data collected during the trials. The trials also identified those membranes that provided the highest flux levels per unit area of membrane surface for a nominated set of conditions. Cleaning procedures were developed that ensured the water flux level was recovered following a clean-in-place process. Bulk samples of clarified juice and membrane filtered juice from each pilot were evaporated to syrup to quantify the gain in pan stage productivity that results from the removal of high molecular weight impurities by membrane filtration. The results are in general agreement with those published by other research groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the fouling characteristics of four tubular ceramic membranes with pore sizes 300 kDa, 0.1 μm and 0.45 μm installed in a pilot plant at a sugar factory for processing clarified cane sugar juices. All the membranes, except the one with a pore size of 0.45 μm, generally gave reproducible results through the trials, were easy to clean and could handle operation at high volumetric concentration factors. Analysis of fouled and cleaned ceramic membranes revealed that polysaccharides, lipids and to a lesser extent, polyphenols, as well as other colloidal particles cause fouling of the membranes. Electrostatic and hydrophobic forces cause strong aggregation of the polymeric components with one another and with colloidal particles. To combat irreversible fouling of the membranes, treatment options that result in the removal of particles having a size range of 0.2–0.5 μm and in addition remove polymeric impurities, need to be identified. Chemical and microscopic evaluations of the juices and the structural characterisation of individual particles and aggregates identified options to mitigate the fouling of membranes. These include conditioning the feed prior to membrane filtration to break up the network structure formed between the polymers and particles in the feed and the use of surfactants to prevent the aggregation of polymers and particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several key issues need to be resolved before an efficient and reproducible Agrobacterium-mediated sugarcane transformation method can be developed for a wider range of sugarcane cultivars. These include loss of morphogenetic potential in sugarcane cells after Agrobacterium-mediated transformation, effect of exposure to abiotic stresses during in vitro selection, and most importantly the hypersensitive cell death response of sugarcane (and other nonhost plants) to Agrobacterium tumefaciens. Eight sugarcane cultivars (Q117, Q151, Q177, Q200, Q208, KQ228, QS94-2329, and QS94-2174) were evaluated for loss of morphogenetic potential in response to the age of the culture, exposure to Agrobacterium strains, and exposure to abiotic stresses during selection. Corresponding changes in the polyamine profiles of these cultures were also assessed. Strategies were then designed to minimize the negative effects of these factors on the cell survival and callus proliferation following Agrobacterium-mediated transformation. Some of these strategies, including the use of cell death protector genes and regulation of intracellular polyamine levels, will be discussed.