923 resultados para Sugar
Resumo:
Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses. © 2014, Mary Ann Liebert, Inc.
Resumo:
The role of added sugar in a healthy diet and implications for health inequalities Sugars provide a readily available, inexpensive source of energy, can increase palatability and help preserve some foods. However added sugars also dilute the nutrient density of the diet. Further, consumption of sugar-sweetened beverages is associated with increased risk of weight gain and reduced bone strength, and high or frequent consumption of added sugars is associated with increased risk of dental caries, particularly in infants and young children. The products of the 2013 NHMRC Dietary Guidelines work program at www.eatforhealth.gov.au include the comprehensive evidence base about food, diet and health relationships and the dietary modeling used to inform recommendations. This presentation will detail the scientific evidence underpinning the revised dietary recommendations on consumption of foods and drinks containing added sugar and compare recommendations with the most recently available relevant Australian dietary intake and trend data. Differences in intakes of relevant food and drinks across quintiles of social disadvantage and in particular between Aboriginal and Torres Strait Islander groups and non-Indigenous Australians will also be explored.
Resumo:
The galactose-binding lectin from the seeds of the jequirity plant (Abrus precatorius) was subjected to various chemical modifications in order to detect the amino acid residues involved in its binding activity. Modification of lysine, tyrosine, arginine, histidine, glutamic acid and aspartic acid residues did not affect the carbohydratebinding activity of the agglutinin. However, modification of tryptophan residues carried out in native and denaturing conditions with N-bromosuccinimide and 2- hydroxy-5-nitrobenzyl bromide led to a complete loss of its carbohydrate-binding activity. Under denaturing conditions 30 tryptophan residues/molecule were modified by both reagents, whereas only 16 and 18 residues/molecule were available for modification by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide respectively under native conditions. The relative loss in haemagglutinating activity after the modification of tryptophan residues indicates that two residues/molecule are required for the carbohydrate-binding activity of the agglutinin. A partial protection was observed in the presence of saturating concentrations of lactose (0.15 M). The decrease in fluorescence intensity of Abrus agglutinin on modification of tryptophan residues is linear in the absence of lactose and shows a biphasic pattern in the presence of lactose, indicating that tryptophan residues go from a similar to a different molecular environment on saccharide binding. The secondary structure of the protein remains practically unchanged upon modification of tryptophan residues, as indicated by c.d. and immunodiffusion studies, confirming that the loss in activity is due to modification only.
Resumo:
Settling, dewatering and filtration of flocs are important steps in industry to remove solids and improve subsequent processing. The influence of non-sucrose impurities (Ca2+, Mg2+, phosphate and aconitic acid) on calcium phosphate floc structure (scattering exponent, Sf), size and shape were examined in synthetic and authentic sugar juices using X-ray diffraction techniques. In synthetic juices, Sf decreases with increasing phosphate concentration to values where loosely bound and branched flocs are formed for effective trapping and removal of impurities. Although, Sf did not change with increasing aconitic acid concentration, the floc size significantly decreased reducing the ability of the flocs to remove impurities. In authentic juices, the flocs structures were marginally affected by increasing proportions of non-sucrose impurities. However, optical microscopy indicated the formation of well-formed macro-floc network structures in sugar cane juices containing lower proportions of non-sucrose impurities. These structures are better placed to remove suspended colloidal solids.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.
Resumo:
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.
Resumo:
1H NMR spin-lattice relaxation time (T1) measurements have been carried out with various sugars, viz. methyl alpha-D-glucopyranoside (alpha-MeGluP), methyl beta-D-lucopyranoside (beta-MeGluP), methyl alpha--annopyranoside (alpha-MeManP), maltose (4-O-alpha-D-glucopyranosyl--glucose), nigerose (3-O-alpha-D-glucopyranosyl-D-glucose), p-nitrophenyl alpha-maltoside (PNP-alpha-maltoside) and p-nitrophenyl beta-maltoside (PNP-beta-maltoside) to determine the distances of sugar protons from Mn2+ in concanavalin A (Con A). With a rotational correlation time of 1.58 x 10(-10) s determined, distances were calculated using Solomon-Bloembergen equation. The data obtained indicated differences in disposition of different groups in the binding site of Con A. An average value of about 10 A was obtained for the distances of sugar protons from Mn2+ in Con A. In the case of mono and disaccharides, the non-reducing end sugar unit was found to be closer to Mn2+ than the reducing end one.
Resumo:
Interaction of the antileukemic drugs, cytosine-arabinoside (Ara-C) and adenosine-arabinoside (Ara-A) and a structural analogue, cytidine, with aromatic dipeptides has been studied by fluorescence and NMR spectroscopy. Ara-C and cytidine bind tryptophanyl and histidyl dipeptides but not tyrosyl dipeptides, while Ara-A does not bind to any of them. Both studies indicate association involving stacking of aromatic moieties. NMR spectra also indicate a protonation of the histidine moiety by Ara-C. In case of cytidine, the chemical shifts observed on binding to His-Phe imply that the backbone protons of the dipeptide participate in the binding. The conformation of the sugar and the base seem to play a very important role in the binding phenomenon as three similar molecules, Ara-C, Ara-A and cytidine bind in totally different ways.
Resumo:
Salmonella typhimurium YeaD (stYeaD), annotated as a putative aldose 1-epimerase, has a very low sequence identity to other well characterized mutarotases. Sequence analysis suggested that the catalytic residues and a few of the substrate-binding residues of galactose mutarotases (GalMs) are conserved in stYeaD. Determination of the crystal structure of stYeaD in an orthorhombic form at 1.9 angstrom resolution and in a monoclinic form at 2.5 angstrom resolution revealed this protein to adopt the beta-sandwich fold similar to GalMs. Structural comparison of stYeaD with GalMs has permitted the identification of residues involved in catalysis and substrate binding. In spite of the similar fold and conservation of catalytic residues, minor but significant differences were observed in the substrate- binding pocket. These analyses pointed out the possible role of Arg74 and Arg99, found only in YeaD-like proteins, in ligand anchoring and suggested that the specificity of stYeaD may be distinct from those of GalMs
Resumo:
Guanine rich sequences adopt a variety of four stranded structures, which differ in strand orientation and conformation about the glycosidic bond even though they are all stabilised by Hoogsteen hydrogen bonded guanine tetrads. Detailed model building and molecular mechanics calculations have been carried out to investigate various possible conformations of guanines along a strand and different possible orientations of guanine strands in a G-tetraplex structure. It is found that for an oligo G stretch per se, a parallel four stranded structure with all guanines in anti conformation is favoured over other possible tetraplex structures. Hence an alternating syn-anti arrangement of guanines along a strand is likely to occur only in folded back tetraplex structures with antiparallel G strands. Our study provides a theoretical rationale for the observed alternation of glycosidic conformation and the inverted stacking arrangement arising from base flipover, in antiparallel G-tetraplex structures and also highlights the various structural features arising due to different types of strand orientations. The molecular mechanics calculations help in elucidating the various interactions which stabilize different G-tetraplex structures and indicate that screening of phosphate charge by counterions could have a dramatic effect on groove width in these four stranded structures.
Resumo:
Guanlne rich sequences adopt a variety of four stranded structures, which differ in strand orientation and conformation about the glycosldic bond even though they are all stabilised by Hoogsteen hydrogen bonded guanlne tetrads. Detailed model building and molecular mechanics calculations have been carried out to investigate various possible conformations of guanlnes along a strand and different possible orientations of guanlne strands In a G-tetraplex structure. It is found that for an ollgo G stretch per se, a parallel four stranded structure with all guanines In anti conformation is favoured over other possible tetraplex structures. Hence an alternating syn-anti arrangement of guanlnes along a strand is likely to occur only in folded back tetraplex structures with antiparallel G strands. Our study provides a theoretical rationale for the observed alternation of glycosldic conformation and the inverted stacking arrangement arising from base filpover, In antlparallel G-tetraplex structures and also highlights the various structural features arising due to different types of strand orientations. The molecular mechanics calculations help in elucidating the various interactions which stabilize different G-tetraplex structures and indicate that screening of phosphate charge by counterions could have a dramatic effect on groove width in these four stranded structures.
Resumo:
A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and the lectin which were prevented by the side chain of the tyrosine in the wild-type lectin. The crystal structures of this Y106G mutant lectin in complex with galactose and N-acetylgalactosamine have been determined. A structural rationale has been provided for the differences in the relative binding affinities of the wild-type and mutant lectins towards the two sugars based on the structures. A hydrogen bond between the O6 atom of the sugars and the variable loop of the carbohydrate-binding site of the lectin is lost in the mutant complexes owing to a conformational change in the loop. This loss is compensated by an additional hydrogen bond that is formed between the acetamido group of the sugar and the mutant lectin in the complex with N-acetylgalactosamine, resulting in a higher affinity of the mutant lectin for N-acetylgalactosamine compared with that for galactose, in contrast to the almost equal affinity of the wild-type lectin for the two sugars. The structure of a complex of the mutant with a citrate ion bound at the carbohydrate-binding site that was obtained while attempting to crystallize the complexes with sugars is also presented.