913 resultados para Suction Bucket Foundation
Resumo:
An analytical solution is presented for the laminar swirling flow in a tube. Attention is given to a particular type of swirling flow corresponding to a zero longitudinal acceleration parameter, with large suction at the surface. The investigation shows that in the case of very large rates of suction the velocity overshoot can be almost eliminated. This is even possible in flows with swirls which are characterized by a velocity overshoot in the longitudinal direction.
Resumo:
The natural frequencies of a reservoir-foundation system are calculated by treating the foundation as a system of linear springs with inertia. The reservoir is treated as consisting of compressible liquid, and the influence of waves at the free surface is included. It is shown that the natural frequencies decrease monotonically as the depth of foundation participating in the motion increases. The influence of waves at the reservoir surface is negligible for the cases normally occurring in practice. It is also shown that the wavelength of motion along the reservoir has no influence on the frequencies when the foundation depth is large compared to the reservoir depth.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.
Resumo:
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.
Resumo:
A quartic profile in terms of the normal distance from the wall has been taken and coefficients are evaluated by satisfying one more boundary condition on the wall than the usual one. By doing so, the limitations about the Reynolds number of the quartic profile adopted by Lew (1949) has been removed. The Kármán (1921) Momentum Integral Equation has been used to evaluate the various characteristics of the flow. A comparative study of Lew's quartic profile and exponential profile together with the quartic profile of the present paper has been undertaken and the graphs for the various characteristics of the flow for a number of Mach numbers and suction coefficients have been drawn. At the end, certain conclusions of general nature about the velocity profiles have been recorded.
Resumo:
In this paper we have discussed the boundary layer on a plate with suction. The problem is solved near the leading edge as well as far downstream. A linear suction law is assumed near the leading edge for simplicity, whereas no restriction is placed on the suction law in the region downstream. An explict expression for boundary layer thickness in terms of suction speed and distance from leading edge is derived. It is found that the thickness of the boundary layer depends on the derivative of the suction speed. The skin friction also has been evaluated. Though near the leading edge a linear law of suction is assumed, the method used in the paper can be easily generalised for any other power law, for example, we may use a power series expansion for the function defining the suction velocity.
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
Customer value has been identified as “the reason” for customers to patronize a firm, and as one of the fundamental blocks that market exchanges build upon. Despite the importance of customer value, it is often poorly defined, or seems to refer to different phenomena. This dissertation contributes to current marketing literature by subjecting the value concept to a critical investigation, and by clarifying its conceptual foundation. Based on the literature review, it is proposed that customer value can be divided into two separate, but interrelated aspects: value creation processes, and value outcome determination. This means that on one hand, it is possible to examine those activities through which value is created, and on the other hand, investigate how customers determine the value outcomes they receive. The results further show that customers may determine value in four different ways: value as a benefit/sacrifice ratio, as experience outcomes, as means-end chains, and value as phenomenological. In value as benefit/sacrifice ratio, customers are expected to calculate the ratio between service benefits (e.g. ease of use) and sacrifices (e.g. price). In value as experience outcomes, customers are suggested to experience multiple value components, such as functional, emotional, or social value. Customer value as means-ends chains in turn models value in terms of the relationships between service characteristics, use value, and desirable ends (e.g. social acceptance). Finally, value as phenomenological proposes that value emerges from lived, holistic experiences. The empirical papers investigate customer value in e-services, including online health care and mobile services, and show how value in e-service stems from the process and content quality, use context, and the service combination that a customer uses. In conclusion, marketers should understand that different value definitions generate different types of understanding of customer value. In addition, it is clear that studying value from several perspectives is useful, as it enables a richer understanding of value for the different actors. Finally, the interconnectedness between value creation and determination is surprisingly little researched, and this dissertation proposes initial steps towards understanding the relationship between the two.
Resumo:
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear couple differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.
Resumo:
Artikkeli selostaa kokonaisarkkitehtuurin käsitettä ja Kansallinen digitaalinen kirjasto -hankkeen kokonaisarkkitehtuurin laatimista. Kokonaisarkkitehtuuri on tietohallinnon strategisen suunnittelun ja johtamisen väline, mutta sillä on monia käytännöllisempia käyttötarkoituksia esimerkiksi tietojärjestelmien kehittämisessä. Kansallinen digitaalinen kirjasto on opetus- ja kulttuuriministeriön tavoitteena on varmistaa kulttuurin ja tieteen digitaalisten tietovarantojen tehokas ja laadukas hallinta, jakelu ja pitkäaikaissäilytys. Lisäksi hankkeessa edistetään kulttuuriperintö- ja asiakirja-aineistojen digitointia.
Resumo:
Unsaturated clays are subject to osmotic suction gradients in geoenvironmental engineering applications and it therefore becomes important to understand the effect of these chemical concentration gradients on soil-water characteristic curves (SWCCs). This paper brings out the influence of induced osmotic suction gradient on the wetting SWCCs of compacted clay specimens inundated with sodium chloride solutions/distilled water at vertical stress of 6.25 kPa in oedometer cells. The experimental results illustrate that variations in initial osmotic suction difference induce different magnitudes of osmotic induced consolidation and osmotic consolidation strains thereby impacting the wetting SWCCs and equilibrium water contents of identically compacted clay specimens. Osmotic suction induced by chemical concentration gradients between reservoir salt solution and soil-water can be treated as an equivalent net stress component, (p(pi)) that decreases the swelling strains of unsaturated specimens from reduction in microstructural and macrostructural swelling components. The direction of osmotic flow affects the matric SWCCs. Unsaturated specimens experiencing osmotic induced consolidation and osmotic consolidation develop lower equilibrium water content than specimens experiencing osmotic swelling during the wetting path. The findings of the study illustrate the need to incorporate the influence of osmotic suction in determination of the matric SWCCs.
Resumo:
Seepage through sand bed channels in a downward direction (suction) reduces the stability of particles and initiates the sand movement. Incipient motion of sand bed channel with seepage cannot be designed by using the conventional approach. Metamodeling techniques, which employ a non-linear pattern analysis between input and output parameters and solely based on the experimental observations, can be used to model such phenomena. Traditional approach to find non-dimensional parameters has not been used in the present work. Parameters, which can influence the incipient motion with seepage, have been identified and non-dimensionalized in the present work. Non-dimensional stream power concept has been used to describe the process. By using these non-dimensional parameters; present work describes a radial basis function (RBF) metamodel for prediction of incipient motion condition affected by seepage. The coefficient of determination, R-2 of the model is 0.99. Thus, it can be said that model predicts the phenomena very well. With the help of the metamodel, design curves have been presented for designing the sand bed channel when it is affected by seepage. (C) 2010 Elsevier B.V. All rights reserved.