956 resultados para Sucrose hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of gibbing process on the protein hydrolysis in terms of free alpha amino nitrogen (FAN) content during the ripening of barrel salted herring at low temperature (4°C) was investigated. For this purpose North Sea herring (Clupea harengus) from north-east British coast was salted in polypropylene barrels and allowed to ripen at 4°C. This process of barrel salting was carried out for whole fish in one batch and gibbed fish in another batch. The investigation was performed by using new salt and used salt in separate barrels for each batch of experimental fish. Results of the present study show that protein hydrolysis was significantly higher in the ripened salt-herring produced from whole fish which was found to have more characteristic sensory properties than those produced from gibbed fish. Similar result (proteolysis) was obtained when the investigation was repeated for the spent herring although the spent herring fails to produce a ripened product with the desired characteristic sensory attributes, compared to those of pre-spawning herring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic changes in the lipids of mackerel (Rastrelliger kanagurta) during storage at -l8°C were studied with a view to understand the factors involved in the formation of free fatty acids. Only the phosphorylated fraction did undergo hydrolysis at an appreciable rate. It was found that the free fatty acid production was mainly associated with the phospholipid hydrolysis. As regards the triglycerides and unsaponifiable matter, there was no significant change in levels during frozen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis behaviors of polyferric sulfate (PFS) and ferric sulfate (FS) under conditions similar to raw wastewater were investigated and the coagulation of biologically pretreated molasses wastewater using PFS and FS was evaluated by studying coagulation efficiency, zeta potential and microscopic surface morphology of flocs. Experimental results show that the hydrolysis behavior of PFS is different from that of FS on the basis of ferron assay. In the case of FS, fast-reacting Fe(III) polymers were the dominant polynuclear species while large fraction of slow-reacting iron polymers is present in PFS. Despite slightly fewer dosages of PFS required as compared to FS, there is no marked difference in the coagulation of molasses effluent between PFS and FS, especially at the optimum dosages. Both coagulants destabilize organic compounds predominantly through charge neutralization-precipitation mechanism. Hydrolysis rate of PFS in synthetic solution is appreciably different from that in raw wastewater. This may due to the effect of sulfate anion introduced as counter-ion as well as depolymerization of larger polymeric Fe(III) species by the organic ligands present in molasses effluent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis/precipitation behaviors of Al3+, Al-13 and Al-30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PAC(A113) and PAC(A130) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 >> PAC(A130) > PACA113. The precipitates' size increased when the dosage increased from 50 mu M to 200 mu M, but it decreased when the dosage increased to 800 AM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The isoelectric points of the freshly formed precipitates for AlCl3, PAC(A113) and PAC(A130) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PAC(A113) and PAC(A130) when pH > 5.0. The Zeta potential of PAC(A130) hydrolysis precipitates was higher than that of PACA113 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous AI(OH)3 precipitates, but those of PACA113 and PACA130 were composed of aggregates of Al-13 and Al-30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al-13 and Al-30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al--Ferron method. The chemical composition of Al-a, Al-b and Al-c depended on coagulant and solution pH. The Al-b measured in the current case was different from Keggin Al-13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ Was converted to highly charged Al-13 species during AlCl3 coagulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 °C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.