967 resultados para Studio raffreddamento elicottero diesel
Resumo:
In the design studio learning environment, traditional student and staff expectations are of close contact teaching and learning. In recent years at QUT students have experienced reduced personal staff attention, and have increasingly felt “anonymous” and correspondingly disengaged, to the detriment of quality learning (Carbone 1998: 8; Biggs 2003). Concurrently, there has been a necessary increase in teaching by sessional staff at QUT with varied levels of experience and assurance. This paper outlines the first iteration of an action research project exploring whether changing the current QUT design studio student and staff relationships may lead to more engaged, dynamic learning environments. “Engagement” is understood as a primarily emotional, rather than operational student concern (Solomonides and Martin 2008; Austerlitz and Aravot 2007). The project inverted the standard QUT design studio teaching structure, and evaluated the new structure and activation of student engagement across four identified markers: attendance, participation, learning and performance (ACER 2009; NSSE 2005; Chapman 2003). Student and staff surveys and focus groups, corporate data, and informal feedback informed these evaluations. Overall, the results support the premise that when students and staff feel part of a reasonably-sized studio class with a dedicated lecturer and self-selected project, the majority are inclined to value these relationships, to feel actively engaged, and to experience some improvement in their learning and teaching performances.
Resumo:
This action research examines the enhancement of visual communication within the architectural design studio through physical model making. „It is through physical model making that designers explore their conceptual ideas and develop the creation and understanding of space,‟ (Salama & Wilkinson 2007:126). This research supplements Crowther‟s findings extending the understanding of visual dialogue to include physical models. „Architecture Design 8‟ is the final core design unit at QUT in the fourth year of the Bachelor of Design Architecture. At this stage it is essential that students have the ability to communicate their ideas in a comprehensive manner, relying on a combination of skill sets including drawing, physical model making, and computer modeling. Observations within this research indicates that students did not integrate the combination of the skill sets in the design process through the first half of the semester by focusing primarily on drawing and computer modeling. The challenge was to promote deeper learning through physical model making. This research addresses one of the primary reasons for the lack of physical model making, which was the limited assessment emphasis on the physical models. The unit was modified midway through the semester to better correlate the lecture theory with studio activities by incorporating a series of model making exercises conducted during the studio time. The outcome of each exercise was assessed. Tutors were surveyed regarding the model making activities and a focus group was conducted to obtain formal feedback from students. Students and tutors recognised the added value in communicating design ideas through physical forms and model making. The studio environment was invigorated by the enhanced learning outcomes of the students who participated in the model making exercises. The conclusions of this research will guide the structure of the upcoming iteration of the fourth year design unit.
Resumo:
A small collection of creative works developed to acompany some of the artistic images developed by visual artist Dr Pamela Croft for the Yeppoon Public Art Project in 2000.
Resumo:
The impact of digital technology within the creative industries has brought with it a range of new opportunities for collaborative, cross-disciplinary and multi-disciplinary practice. Along with these opportunities has come the need to re-evaluate how we as educators approach teaching within this new digital culture. Within the field of animation, there has been a radical shift in the expectations of students, industry and educators as animation has become central to a range of new moving image practices. This paper interrogates the effectiveness of adopting a studio-based collaborative production project as a method for educating students within this new moving-image culture. The project was undertaken, as part of the Creative Industries Transitions to New Professional Environments program at Queensland University of Technology (QUT) in Brisbane Australia. A number of students studying across the Creative Industries Faculty and the Faculty of Science and Technology were invited to participate in the development of a 3D animated short film. The project offered students the opportunity to become actively involved in all stages of the creative process, allowing them to experience informal learning through collaborative professional practice. It is proposed that theoretical principles often associated with andragogy and constructivism can be used to design and deliver programs that address the emerging issues surrounding the teaching of this new moving image culture.
Resumo:
Early this year the Australian Department of Environment and Heritage commissioned a desktop literature review with a focus on ultrafine particles including analysis of health impacts of the particles as well as the impact of sulphur content of diesel fuel on ultrafine particle emission. This paper summarizes the findings of the report on the link between the sulphur content of diesel fuels and the number of ultrafine particles in diesel emissions. The literature search on this topic resulted in over 150 publications. The majority of these publications, although investigating different aspects of the influence of fuel sulphur level on diesel vehicle emissions, were not directly concerned with ultrafine particle emissions. A specific focus of the paper is on: ----- ----- summary of state of knowledge established by the review, and ----- ----- summary of recommendations on the research priorities for Australia to address the information gaps for this issue, and on the appropriate management responses.
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE)as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.
Resumo:
This paper presents a series of ongoing experiments to facilitate serendipity in the design studio through a diversity of delivery modes. These experiments are conducted in a second year architectural design studio, and include physical, dramatic and musical performance. The act of designing is always exploratory, always seeking an unknown resolution, and the ability to see and capture the value in the unexpected is a critical aspect of such creative design practice. Engaging with the unexpected is however a difficult ability to develop in students. Just how can a student be schooled in such abilities when the challenge and the context are unforeseeable? How can students be offered meaningful feedback about an issue that cannot be predicted, when feedback comes in the form of extrinsic assessment from a tutor? This project establishes a number of student activities that seek to provide intrinsic feedback from the activity itself. Further to this, the project seeks to heighten student engagement with the project through physical expression and performance: utilising more of the students’ senses than just vision and hearing. Diana Laurillard’s theories of conversational frameworks (2002) are used to interrogate the act of dramatic performance as an act of learning, with particular reference to the serendipitous activities of design. Such interrogation highlights the feedback mechanisms that facilitate intrinsic feedback and fast, if not instantaneous, cycles of learning. The physical act of performance itself provides a learning experience that is not replicable in other modes of delivery. Student feedback data and independent assessment of project outcomes are used to assess the success of this studio model.
Resumo:
Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.
Resumo:
This paper explores an early modern application of the Stoic principle of similitudo temporum to the study of history. In so doing, it highlights the tension between historiography and antiquarianism, suggesting that the collection of remains – whether material or immaterial – was understood in at least some early modern circles as an integral part of the historiographic process. It also emphasises the evolving meaning of “history” during this time, drawing attention to the perceived novelty of such antiquarian approaches to the study of the past, and briefly exploring subtle differences between the example at hand and the work and activities of better-known figures such as Nicolas-Claude Fabri de Peiresc and Justus Lipsius. As such, this paper makes a contribution to our evolving understanding of early modern scholarship, and draws attention to the variegated approaches of its practitioners to contemporary issues.
Resumo:
Diesel engine fuel injector faults can lead to reduced power, increased fuel consumption and greater exhaust emission levels and if left unchecked, can eventually lead to premature engine failure. This paper provides an overview of the Diesel, or compression ignition combustion process, and of the two basic fuel injector nozzle designs used in Diesel engines, namely, the pintle-type and hole-type nozzles. Also described are some common faults associated with these two types of fuel injector nozzles and the techniques previously used to experimentally simulate these faults. This paper also presents a recent experimental campaign undertaken using two different diesel engines whereby various fuel injector nozzle faults were induced into the engines. The first series of tests was undertaken using a turbo-charged 5.9 litre; Cummins Diesel engine whist the second series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine. Data corresponding to different injector fault conditions was captured using in-cylinder pressure, and acoustic emission transducers along with both crank-angle encoder and top-dead centre reference signals. Using averaged in-cylinder pressure signals, it was possible to qualify the severity of the faults whilst averaged acoustic emission signals were in turn, used as the basis for wavelets decomposition. Initial observations from this signal decomposition are also presented and discussed.
Resumo:
Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.
Resumo:
The U2 Tower competition entry involved the architectural design for a landmark office tower with associated head office for the world acclaimed rock band U2. The selected site for the office tower was located on the banks of the river Liffey, Dublin. The tower design was intended as a signifier or gateway to the docklands and the city itself. The proposed design incorporated a podium level for music retail and a media centre, a concourse level including cafeteria and outdoor areas as well as a commercial tower.
Resumo:
A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.
Resumo:
Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.