972 resultados para Strictly hyperbolic polynomial
Resumo:
We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.
Resumo:
The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.
Resumo:
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.
Resumo:
The problem discussed is the stability of two input-output feedforward and feedback relations, under an integral-type constraint defining an admissible class of feedback controllers. Sufficiency-type conditions are given for the positive, bounded and of closed range feed-forward operator to be strictly positive and then boundedly invertible, with its existing inverse being also a strictly positive operator. The general formalism is first established and the linked to properties of some typical contractive and pseudocontractive mappings while some real-world applications and links of the above formalism to asymptotic hyperstability of dynamic systems are discussed later on.
Resumo:
We extend the classic Merton (1969, 1971) problem that investigates the joint consumption-savings and portfolio-selection problem under capital risk by assuming sophisticated but time-inconsistent agents. We introduce stochastic hyperbolic preferences as in Harris and Laibson (2013) and find closed-form solutions for Merton's optimal consumption and portfolio selection problem in continuous time. We find that the portfolio rule remains identical to the time-consistent solution with power utility and no borrowing constraints. However,the marginal propensity to consume out of wealth is unambiguously greater than the time-consistent, exponential case and,importantly, it is also more responsive to changes in risk. These results suggest that hyperbolic discounting with sophisticated agents offers promise for contributing to explaining important aspects of asset market data.
Resumo:
The Gainesville Florida Reef, a satellite of the Worldwide Hyperbolic Crochet Coral Reef, project not only shows the beauty of reefs but serves to: • Foster scientific communication through the visual arts • Raise awareness of the fragility of our coral reefs and the entire ecosystem • Support learning by creating physical models of geometric principles • Connect several areas on campus, including fine arts, mathematics and ecology and environmental sciences through collaboration and mutual interest • Encourage local community and alumni involvement through creating, observing and learning