972 resultados para Strength of materials
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. To evaluate the content of inorganic particles and the flexural strength of new condensable composites for posterior teeth in comparison to hybrid conventional composites.Method. The determination of the content of inorganic particles was performed by mass weighing of a polymerized composite before and after the elimination of the organic phase. The volumetric particle content was determined by a practical method based on Archimedes' principle, which calculates the volume of the composite and their particles by differential mass measured in the air and in water. The flexural. strength of three points was evaluated according to the norm ISO 4049:1988.Results. The results showed the following filter content: Alert, 67.26%; Z-100, 65.27%; Filtek P 60, 62.34%; Ariston pHc, 64.07%; Tetric Ceram, 57.22%; Definite, 54.42%; Solitaire, 47.76%. In the flexural strength test, the materials presented the following decreasing order of resistance: Filtek P 60 (170.02 MPa) > Z-100 (151.34 MPa) > Tetric Ceram (126.14 MPa) = Alert (124.89 MPa) > Ariston pHc (102.00 MPa) = Definite (93.63 MPa) > Solitaire (56.71 MPa).Conclusion. New condensable composites for posterior teeth present a concentration of inorganic particles similar to those of hybrid composites but do not necessarily present higher flexural strength. (C) 2003 Elsevier B.V. Ltd. Alt rights reserved.
Resumo:
Objectives: This study investigated the effect of relining, water storage and cyclic loading on the ultimate flexural strength (FSU) and on the flexural strength at the proportional limit (FSPl) of a denture base acrylic resin (Lucitone 550-L).Methods: Rectangular bars of L were made (64 mm x 10 mm x 2 mm) and relined (1.3 mm) with four relining resins (Kooliner-K, Ufi Gel Hard-UGH, Tokuso Rebase Fast-TR and New Truliner-NT). In addition, specimens relined with L and intact L specimens were made (64 mm x 10 mm x 3.3 mm). A three-point flexural test was applied on the specimens (n = 10) after (1) polymerization; (2) water storage (30 days); (3) cyclic loading (10,000 cycles at 5 Hz) and (4) water storage (30 days) + cyclic loading. Data (MPa) were analyzed with three-way ANOVA and Tukey's HSD tests (alpha = 0.05). To test for a possible correlation between FSU and FSPl, a linear regression coefficient 'r' was calculated.Results: After water storage, L-UGH and L-TR demonstrated an increased FSU (41.4950.64 MPa and 49.95-57.36 MPa, respectively) (P < 0.05). Only L-TR demonstrated an increased FSPl (20.58-24.21 MPa) after water storage (P < 0.05). L-L had the highest FSU (between 78.57 and 85.09 MPa) and FSPl (between 31.30 and 34.17 MPa) (P < 0.05). The cyclic loading decreased the FSU and FSPl of all materials (P < 0.05). Regression analysis showed a strong linear correlation between the two variables (r = 0.941).Conclusions: Water storage improved the FSU of L-UGH and L-TR and the FSPl of L-TR. L-L produced the highest FSU and FSPl. The FSU and FSPl of all materials were detrimentally influenced by cyclic loading.
Resumo:
Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).
Resumo:
Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective: This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods: Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37 degrees C for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37 degrees C for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (alpha=0.05) and the failure modes were visually classified. Results: No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions: Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.
Resumo:
During microwave disinfection, the dentures are exposed to water at high temperature and this may affect the bond between the denture teeth and the acrylic resin from which dentures are made. In this study, a shear test was used to evaluate the effect of microwave disinfection (650W/6 min) on the bond strength of two types of denture teeth to three acrylic resins, with different polymerization methods. The specimens were submitted to the shear tests (0.5 mm/min) after: immersion in water (37 degrees C) for 48 h or 8 days (controls); two or seven cycles of microwave disinfection (test groups). Data (MPa) were analyzed using three-way ANOVA and Tukey HSD test (alpha = 0.05). Microwave disinfection did not adversely affect the bond strength of all tested materials with the exception of QC-20 bonded to SR Vivodent PE, for which a significant reduction was recorded after seven cycles of irradiation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective: Mechanical properties of the acrylic resins used for denture fabrication may be influenced by water and temperature. Thus, the aim of this study was to evaluate the effect of thermocycling on the flexural and impact strength of a high-impact (Lucitone 199) and a urethane-based denture material (Eclipse).Materials and methods: Flexural strength (64 x 10 x 3.3 mm) and impact strength (60 x 6 x 4 mm) specimens were made following the manufacturers' instructions and assigned to two groups (n = 10): control (C) - not thermocycled - and T - thermocycled (5000 cycles between 5 and 55 degrees C). Specimens were submitted to three-point bending and Charpy impact tests.Results: Flexural strength (MPa) and impact strength (kJ/m(2)) data were analysed with two-way ANOVA (p = 0.05). The flexural strength of material Eclipse (C, 136.5; T, 130.7) was significantly higher than that of resin Lucitone 550 (C, 99.4; T, 90.1). Material Eclipse exhibited significantly higher impact strength (C, 6.9; T, 5.3) than the resin Lucitone 550 (C, 3.5; T, 3.0). For both materials, a significant decrease in flexural and impact strengths was observed when the specimens were thermocycled.Conclusion: Flexural and impact strengths were higher for Eclipse than for Lucitone 550, in both groups. Thermocycling decreased the flexural and impact strengths of Eclipse and Lucitone 550.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To compare the fracture resistance of bovine teeth after intracoronal bleaching with sodium percarbonate (SPC) or sodium perborate (SP) mixed with water or 20% hydrogen peroxide (HP). Materials and methods: Fifty extracted bovine teeth were divided into four experimental groups (G1G4) and one control (n = 10) after endodontic treatment. Following root canal obturation, a glass ionomer barrier was placed at the cementoenamel junction. After that, the pulp chambers were filled with: G1 SP with water; G2 SP with 20% HP; G3 SPC with water; and G4 SPC with 20% HP. No bleaching agent was used in the control group. Coronal access cavities were sealed with glass ionomer and specimens were immersed in artificial saliva. The bleaching agents were replaced after 7 days, and teeth were kept in artificial saliva for an additional 7 days, after which the pastes were removed and the coronal access cavities were restored with glass ionomer. Crowns were subjected to compressive load at a cross head speed of 0.5 mm min-1 applied at 135 degrees to the long axis of the root by an EMIC DL2000 testing machine, until coronal fracture. Data were statistically analysed by anova and Tukey test. Results: No differences in fracture resistance were observed between the experimental groups (P > 0.05). However, all experimental groups presented lower fracture resistance than the control group (P < 0.05). Conclusion: SPC and SP led to equal reduction on fracture resistance of dental crowns, regardless of being mixed with water or 20% HP.
Resumo:
Background and Objective: evaluate the adhesion of adhesive restorations with and without a base of resin-modified glass-ionomer cement (RMGIC) to dentin irradiated with Er:YAG laser.Study Design/Materials and Methods: Twenty-four human molar teeth were divided into 6 groups (n=4): G1) 37% Phosphoric acid (PA) + Adhesive system (Ad) + Composite resin (CR); G2) RMGIC + CR; G3) Laser (60mJ-5Hz-20s) + PA + Ad + CR; G4) Laser (60 mJ-5 Hz-20 s) + RMGIC + CR; G5) Laser (100mJ-5Hz-20s) + PA + Ad + CR; G6) Laser (100mJ-5Hz-20s) + RMGIC + CR. Teeth were prepared, restored and cut into specimens, according to the treatment proposed and to methodology for microtensile test. Data were submitted to ANOVA and Tukey statistical tests (alpha=5%).Results:. The mean values for adhesion (MPa) and standard deviation (+/- SD) were: G1) 26.30(+/- 4.50), G2) 5.34(+/- 2.87), G3) 21.16(+/- 6.01), G4) 5.22(+/- 1.52), G5) 22.23(+/- 4.98), G6) 5.25(+/- 3.08).Conclusion: the use of Er:YAG laser did not influence on the restorations adhesion.
Resumo:
The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group); and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE), and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE). Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05) among the groups G1a (25.44 ± 2.35) and G1b (23.62 ± 3.48), G2a (11.77 ± 2.67) and G2b (9.93 ± 3.37). Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a 'monoblock' effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey's post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
Purpose: To evaluate the effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of a ceramic fused to cobalt-chromium alloy or gold alloy.Materials and Methods: Metallic bars (n = 120) were made (25 mm x 3 mm x 0.5 mm): 60 with gold alloy and 60 with Co-Cr. At the central area of the bars (8 mm x 3 mm), a layer of opaque ceramic and then two layers of glass ceramic (Vita VM13, Vita Zahnfabrick) were fired onto it (thickness: 1 mm). Ten specimens from each alloy group were randomly allocated to a surface treatment [(tungsten bur or air-particle abrasion (APA) with Al(2)O(3) at 10 mm or 20 mm away)] and mechanico-thermal cycling (no cycling or mechanically loaded 20,000 cycles; 10 N distilled water at 37 degrees C and then thermocycled 3000 cycles; 5 degrees C to 55 degrees C, dwell time 30 seconds) combination. Those specimens that did not undergo mechanico-thermal cyclingwere stored inwater (37 degrees C) for 24 hours. Bond strength was measured using a three-point bend test, according to ISO 9693. After the flexural strength test, failure types were noted. The data were analyzed using three factor-ANOVA and Tukey's test (alpha = 0.05).Results: There were no significant differences between the flexural bond strength of gold and Co-Cr groups (42.64 +/- 8.25 and 43.39 +/- 10.89 MPa, respectively). APA 10 and 20 mm away surface treatment (45.86 +/- 9.31 and 46.38 +/- 8.89 MPa, respectively) had similar mean flexural strength values, and both had significantly higher bond strength than tungsten bur treatment (36.81 +/- 7.60 MPa). Mechanico-thermal cycling decreased the mean flexural strength values significantly for all six alloy-surface treatment combinations tested when compared to the control groups. The failure type was adhesive in the metal/ceramic interface for specimens surface treated only with the tungsten bur, and mixed for specimens surface treated with APA 10 and 20 mm.Conclusions: Considering the levels adopted in this study, the alloy did not affect the bond strength; APA with Al(2)O(3) at 10 and 20 mm improved the flexural bond strength between ceramics and alloys used, and the mechanico-thermal cycling of metal-ceramic specimens resulted in a decrease of bond strength.