991 resultados para Stomach antrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harbour seals in Svalbard have short longevity, despite being protected from human hunting and having limited terrestrial predation at their haulout sites, low contaminant burdens and no fishery by-catch issues. This led us to explore the diet of Greenland sharks (Somniosus microcephalus) in this region as a potential seal predator. We examined gastrointestinal tracts (GITs) from 45 Greenland sharks in this study. These sharks ranged from 229 to 381 cm in fork length and 136-700 kg in body mass; all were sexually immature. Seal and whale tissues were found in 36.4 and 18.2%, respectively, of the GITs that had contents (n = 33). Based on genetic analyses, the dominant seal prey species was the ringed seal (Pusa hispida); bearded seal (Erignathus barbatus) and hooded seal (Cystophora cristata) tissues were each found in a single shark. The sharks had eaten ringed seal pups and adults based on the presence of lanugo-covered prey (pups) and age determinations based on growth rings on claws (<1 year and adults). All of the whale tissue was from minke whale (Balenoptera acutorostrata) offal, from animals that had been harvested in the whale fishery near Svalbard. Fish dominated the sharks' diet, with Atlantic cod (Gadus morhua), Atlantic wolffish (Anarhichas lupus) and haddock (Melanogrammus aeglefinus) being the most important fish species. Circumstantial evidence suggests that these sharks actively prey on seals and fishes, in addition to eating carrion such as the whale tissue. Our study suggests that Greenland sharks may play a significant predatory role in Arctic food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea ice algae have been widely discussed as a potential food source for pelagic and benthic animals in ice-covered waters, specifically in the light of current substantial changes in the Arctic ice regime. Stomach and gut contents of the Arctic nearshore lysianassid amphipod Onisimus litoralis sampled from February to May 2003 indicate that Arctic ice algae were dominant food no earlier than the onset of ice melt. Crustaceans, common prey in a previous study, were absent in stomachs and guts during the survey period. Our data support the concept that sea ice-derived organic carbon is of specific relevance for Arctic plankton and benthos during the period of ice melt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tuna stomach database from AZTI-Tecnalia corresponds to 7 years of sampling from 2004 to 2011. Due to the absence of continuity in the different projects dealing with the feeding ecology of tunas, the sampling could not be performed every year for both species, and no sample was collected in 2008. However, the fish stomach content record contents composition - by prey weight - of 1525 albacore caught in the Bay of Biscay and surrounding waters of the North Atlantic Drift Region in 2005 (n=397), 2006 (n=196), 2007 (n=37), 2009 (n=95), 2010 (n=566) and 2011 (n=234) ; and of 686 bluefin tunas caught in the Southeastern Bay of Biscay in 2004 (n=32), 2005 (n=36), 2006 (n=3), 2009 (n=257), 2010 (n=233) and 2011 (n=125). Samples have been obtained from scientific research surveys (using a variety of different fishing gears), from commercial fisheries catches, from individual fish voluntarily sampled by recreational fishermen and from fish accidentally stranded on coastlines. Each predator is identified by an ID and its length and wet weight are given. In case the wet weight could not be measured, it was estimated through a length-weight relationship equation and is indicated in the comment for the Predator mass column. The total weight of each prey is given, as well as the weight of each prey taxonomic group in each stomach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shorthorn sculpin (Myoxocephalus scorpius) from Frobisher Bay, Baffin Island, is a slow growing long-lived species. A wide range of diet items were present in the stomachs of the shorthorn sculpins sampled but 2-3 diet items (amphipod species) comprised 99.5 % of total food consumed. These amphipods were present in the stomachs in similar proportions among all age classes of shorthorn sculpin. Several new host records for parasites were reported and mean numbers of parasite species increased with shorthorn sculpin age. The increased diversity of parasite species and higher d15N values in older/larger individuals suggest that their diets were more diverse and the prey items consumed had higher d15N values. By contrast, the value of d13C in dominant diet items masked the d13C values of minor diet items. We conclude that parasites and stable isotope values provide complementary data on feeding patterns of the shorthorn sculpin. The ubiquitous marine acanthocephalan, Echinorhynchus gadi, was found at high prevalences (87-100 %) and mean intensities (28-35), and were localized in the midgut. In contrast to other studies on acanthocephalans, E. gadi did not influence fish condition as measured by condition factor, liver somatic and gonado-somatic indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.