996 resultados para Stibnite Galena Chalcocite Ternary System
Resumo:
Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.
Resumo:
Glasses in the ternary system (70 - x)NaPO3-30WO 3-xBi2O3, with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 C for 0 ≤ x ≤ 15 mol % and decreases to 417 C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi 2O3 formation of BiO6 clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n 2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n0 ≤ 1.88, n2 ≥ 10-15 cm 2/W and NL absorption coefficient, α2 ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared. © 2012 American Chemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Die vorliegende Arbeit beschäftigt sich mit dem Phasenverhalten von Polyethylen (PE) in nicht-reaktiven und in reaktiven Systemen. Von drei eng verteilten Polyethylenen (Mw = 6,4, 82 bzw. 380 kg/mol) in n-Hexan sowie für das System 2,2-Dimethylbutan / PE 82 wurde die Entmischung in Abhängigkeit von der Zusammensetzung, dem Druck und der Temperatur experimentell bestimmt. Die Modellierung der Trübungskurven erfolgte nach der Theorie von Sanchez und Lacombe. Dieser Ansatz beschreibt die Ergebnisse qualitativ und kann in einem engen Temperatur- und Druckbereich für gegebenes Molekulargewicht die kritische Temperatur und den kritischen Druck quantitativ vorhersagen. Durch Extrapolation der kritischen Temperatur der verschiedenen Lösungen von PE in n-Hexan auf unendliches Molekulargewicht nach Shultz-Flory wurde im Druckbereich von 20 bis 100 bar und im Temperaturbereich von 130 bis 200 °C eine Grenzlinie bestimmt. Diese Linie trennt unabhängig vom Molekulargewicht des Polymers und der Zusammensetzung der Mischung das Zweiphasengebiet vom homogenen Bereich. Im Fall des Mischlösungsmittels n-Hexan / 2,2-Dimethylbutan wurde für eine annähernd kritische Polymerkonzentration die Abhängigkeit der Entmischungsbedingungen von der Zusammensetzung untersucht. Durch einfache Erweiterung der Sanchez-Lacombe-Theorie und Einführen eines Fitparameters konnte das ternäre System beschrieben werden. An einer breit verteilten PE-Probe wurden Experimente zur Fraktionierung von PE in n-Hexan durchgeführt. Die Analyse der in den koexistenten Phasen enthaltenen Polymere lieferte Informationen über die Konzentration und die Molekulargewichtsverteilung des PE in diesen Phasen sowie die kritische Zusammensetzung der Mischung. Von verschiedenen PE-Lösungen (Mw = 0,5 kg/mol) wurde die polymerisationsinduzierte Phasenseparation in Isobornylmethacrylat mit und ohne Vernetzer untersucht. Mit 15 Gew.-% PE und in Abwesenheit von Vernetzer findet die Entmischung erst bei hohen Umsätzen statt. Die Charakterisierung der resultierenden Proben zeigte, dass sich etwas mehr als 5 Gew.-% PE im Polyisobornylmethacrylat lösen. Die Glasübergangstemperaturen der Polymermischungen steigen mit steigender Vernetzer- und sinkender Polyethylenkonzentration. Bei Proben mit 15 Gew.-% PE zeigte sich folgendes: 5 Gew.-% Vernetzer führen zu großen PE-Bereichen (150 - 200 nm) in der Matrix und der Kristallinitätsgrad ist gering. Bei der Polymermischung mit 10 Gew.-% Vernetzer bilden sich sehr kleine Polyethylenkristalle (< 80 nm) und der Kristallinitätsgrad ist hoch. Ohne Vernetzer hängt der Kristallinitätsgrad - wie bei reinem PE - von der Abkühlrate ab, mit Vernetzer ist er von ihr unabhängig.
Resumo:
Plutonium represents the major contribution to the radiotoxicity of spent nuclear fuel over storage times of up to several hundred thousand years. The speciation of plutonium in aquifer systems is important in order to assess the risks of high-level nuclear waste disposal and to acquire a deep knowledge of the mobilization and immobilization behavior of plutonium. In aqueous solutions, plutonium can coexist in four oxidation states and each one of them has different chemical and physical behavior. Tetravalent plutonium is the most abundant under natural conditions. Therefore, detailed speciation studies of tetravalent plutonium in contact with humic substances (HS) and kaolinite as a model clay mineral have been performed in this work. Plutonium is present in the environment at an ultratrace level. Therefore, speciation of Pu at the ultratrace level is mandatory. Capillary electrophoresis (CE) coupled to resonance ionization mass spectrometry (RIMS) was used as a new speciation method. CE-RIMS enables to improve the detection limit for plutonium species by 2 to 3 orders of magnitude compared to the previously developed CE-ICP-MS. For understanding the behavior of Pu(IV) in aqueous systems, redox reactions, complexation, and sorption behavior of plutonium were studied. The redox behavior of plutonium in contact with humic acid (HA) and fulvic acid (FA) was investigated. A relatively fast reduction of Pu(VI) in contact with HS was observed. It was mainly reduced to Pu(IV) and Pu(III) within a couple of weeks. The time dependence of the Pu(IV) complexation with Aldrich HA was investigated and a complex constant (logßLC) between 6.4 - 8.4 of Pu(IV) was determined by means of ultrafiltration taking into account the loading capacity (LC). The sorption of tetravalent plutonium onto kaolinite was investigated as a function of pH in batch experiments under aerobic and anaerobic conditions. The sorption edge was found at about pH = 1 and a maximum sorption at around pH = 8.5. In the presence of CO2 at pH > 8.5, the sorption of plutonium was decreased probably due to the formation of soluble carbonate complexes. For comparison, the sorption of Th(IV) onto kaolinite was also investigated and consistent results were found. The Pu(IV) sorption onto kaolinite was studied by XANES and EXAFS at pH 1, 4, 9 and the sorbed species on kaolinite surface was Pu(IV). Depending on the pH, only 1 - 10 % of the sorbed plutonium is desorbed from kaolinite and released into a fresh solution at the same pH value. Furthermore, the sorption of HS onto kaolinite was studied as a function of pH at varying concentrations of HS, as a prerequisite to understand the more complex ternary system. The sorption of HA onto kaolinite was found to be higher than that of FA. The investigation of the ternary systems (plutonium-kaolinite-humic substances) is performed as a function of pH, concentration of HS, and the sequences of adding the reactants. The presence of HS strongly influences the sorption of Pu(IV) onto kaolinite over the entire pH range. For comparison, the influence of HS on the sorption of Th(IV) onto kaolinite was also investigated and a good agreement with the results of Pu(IV) was obtained.
Development of glass-ceramics from combination of industrial wastes together with boron mining waste
Resumo:
The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.
Resumo:
The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0−6. Because it is a strong acid−base system, H2SO4−NH2CH3 quickly forms a tightly bound HSO4−−NH3CH3+ complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4−NH2CH3 is −21.8 kcal mol−1 compared with −16.8 kcal mol−1 for H2SO4−NH3 and −12.8 kcal mol−1 for H2SO4−H2O. Adding one to two water molecules to the H2SO4−NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4−NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.
Resumo:
The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.
Resumo:
The ~46-m.y.-old igneous basement cored during Leg 200 in the North Pacific represents one of the few cross sections of Pacific oceanic crust with a total penetration into basalt of >100 m. The rocks, emplaced during the Eocene at a fast-spreading rate (~14 cm/yr; full rate) are strongly differentiated tholeiitic basalts (ferrobasalts) with 7-4.5 wt% MgO, relatively high TiO2 (2-3.5 wt%), and total iron as Fe2O3 (9.1-16.8 wt%). The differentiated character of these lavas is related to unusually large amounts of crystallization differentiation of plagioclase, clinopyroxene, and olivine. The lithostratigraphy of the basement (cored to ~170 meters below seafloor) is divided into three units. The deepest unit (lithologic Unit 3), is a succession of lava flows of no more that a few meters thickness each. The intermediate unit (lithologic Unit 2) is represented by intermixed thin flows and pillows, whereas the shallowest unit (lithologic Unit 1), comprises two massive flows. The rocks range from aphyric to sparsely clinopyroxene-plagioclase-phyric (phenocryst content = <3 vol%) and from holocrystalline to hypohyaline. Chilled margins of pillow fragments show holohyaline to sparsely vitrophyric textures. Site 1224 oxide minerals present a type of alteration not previously seen, where titanomagnetite is only partially destroyed and the pure magnetite component is partially removed from the mineral, leaving, in the most extreme case, a nearly pure ulvöspinel residuum. As a result of this dissolution, iron, mainly in the oxidized state, is added to the circulating solvent fluids. This means that a considerable metal source can result from low-temperature reactions throughout the upper ocean crust. The coarsest-grained lithologic Unit 1 rocks have interstitial myrmekitic intergrowths of quartz and sodic plagioclase (~An12), roughly similar in mineralogy and bulk composition to tonalite/trondhjemite veinlets in abyssal gabbros from the southwest Indian Ocean and Hess Deep, eastern equatorial Pacific. Based on idiomorphic relationships and projections into the simplified Q-Ab-Or-H2O granite ternary system, the myrmekitic intergrowths formed at the same time as, or just after, the oxide minerals coprecipitated and at low water vapor pressure (~0.5 kbar). Their compositions correspond to SiO2-oligoclase intergrowths that are considerably less potassic than dacitic glasses that erupt, although rarely, along the East Pacific Rise or that have been produced experimentally by partial melting of gabbro. Based on the crystallization history and comparison to experimental data, the original interstitial siliceous liquids resulted from late-stage immiscible separation of siliceous and iron-rich liquids. The rare andesitic lavas found along the East Pacific Rise may be hybrid rocks formed by mixing of these immiscible siliceous melts with basaltic magma.
Resumo:
O aumento da resistência microbiana devido a fatores como uso excessivo e ineficiente de antibióticos convencionais acarreta a necessidade da busca por novos compostos bioativos que atuem por mecanismos de ação diferentes aos fármacos já conhecidos. Na agricultura, o uso intensivo de pesticidas para o combate de microrganismos que comprometem principalmente a parte alimentícia também traz diversos problemas relacionados à resistência antimicrobiana e a riscos ambientais, oriundos do acúmulo dessas substâncias no solo. Dentro deste aspecto, o pseudofungo Pythium aphanidermatum, da classe dos oomicetos, destaca-se por ser uma espécie agressiva e altamente resistente a fungicidas comuns, apodrecendo raízes e frutos de cultivos de tomate, beterraba, pepino, pimentão, etc. A própolis verde, constituída em sua grande parte por material resinoso coletado e processado pela abelha da espécie Apis mellifera tem sido utilizada na medicina tradicional devido ao seu amplo espectro de ações preventivas e tratamentos de doenças, possuindo propriedades anti-inflamatórias, antimicrobianas, anticancerígenas e antioxidantes, tornando-se um produto de grande interesse na busca de novos compostos bioativos. Dentro destes aspectos apresentados, neste trabalho investigamos a ação da própolis verde contra o fitopatógeno P. aphanidermatum e identificamos através da técnica de cromatografia e bioensaios que a Artepillin C (3,5-diprenil-4-ácido-hidroxicinâmico), majoritária na própolis verde, foi o principal composto nesta ação. Os efeitos terapêuticos desta molécula tem sido foco de muitos estudos, porém ainda não há evidência em sua interação com agregados anfifílicos que mimetizam membranas celulares. O caráter anfifílico do composto, elevado pela presença dos grupos prenilados ligados ao ácido cinâmico, favoreceram a sua inserção nas membranas modelo, principalmente em seu estado agregado. Estas conclusões puderam ser inferidas devido às alterações nas propriedades das bicamadas lipídicas na presença da Artepillin C, podendo causar, especificamente para o caso de fitopatógenos como o P. aphanidermatum, perdas funcionais das proteínas de membranas, liberação de eletrólitos intracelulares e desintegração citoplasmática dos micélios e esporos. Ainda, as diferentes composições lipídicas nas vesículas influenciam no modo de interação do composto e consequentes alterações em suas estruturas, principalmente na presença do colesterol, que auxilia na manutenção da permeabilidade da bicamada lipídica, que pode contribuir para a integridade do conteúdo citoplasmático da célula.
Resumo:
A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.
Resumo:
Glasses have been prepared by conventional quenching techniques in the ternary sulphate system KzSO4-Na2SO4-ZnSO4, in the range 30-80 % ZnS04. The proportions of alkali sulphates in the glass have been varied widely. The glass formation region has been delineated and densities, refractive indices and microhardnesses have been measured. The heat capacities of the glasses have been measured over a wide range of temperature by differential scanning calorimetry. The effect of composition on molar volume, molar polarization and glass transition have been explained on the basis of a random close-packing model.