977 resultados para Stem cells Transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) is used for the treatment of hemato-oncologic malignancies. In this study, we measured the effect of HDC/ASCT on plasma concentrations of antiangiogenic soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and of leukapheresis products (LP) and patient serum on chick chorioallantoic (CAM) angiogenesis. MATERIALS AND METHODS: VEGFR1- and CD34-expressing cells of leukapheresis products were analyzed by flow cytometry. Alternatively spliced isoforms of VEGFR1 mRNA were quantified using reverse transcription PCR. RESULTS: Plasma concentrations of sVEGFR1 decreased after HDC, but significantly increased after ASCT. In the CAM assay, sera of patients elicited a proangiogenic effect before and after HDC, but a strong antiangiogenic response after ASCT, comparable to that of bevacizumab at therapeutic concentrations. LP contains high concentrations of sVEGFR1, and high density of VEGFR1(+) neutrophilic granulocytes, in which mRNA expression is shifted toward the soluble VEGFR1 isoform. CONCLUSION: Neutrophil-derived antiangiogenic sVEGFR1 within the LP may contribute to the therapeutic efficacy of ASCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural tissue has historically been regarded as having poor regenerative capacity but recent advances in the growing fields of tissue engineering and regenerative medicine have opened new hopes for the treatment of nerve injuries and neurodegenerative disorders. Adipose tissue has been shown to contain a large quantity of adult stem cells (ASC). These cells can be easily harvested with low associated morbidity and because of their potential to differentiate into multiple cell types, their use has been suggested for a wide variety of therapeutic applications. In this review we examine the evidence indicating that ASC can stimulate nerve regeneration by both undergoing neural differentiation and through the release of a range of growth factors. We also discuss some of the issues that need to be addressed before ASC can be developed as an effective cellular therapy for the treatment of neural tissue disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest groups advocate centre-specific outcome data as a useful tool for patients in choosing a hospital for their treatment and for decision-making by politicians and the insurance industry. Haematopoietic stem cell transplantation (HSCT) requires significant infrastructure and represents a cost-intensive procedure. It therefore qualifies as a prime target for such a policy. We made use of the comprehensive database of the Swiss Blood Stem Cells Transplant Group (SBST) to evaluate potential use of mortality rates. Nine institutions reported a total of 4717 HSCT - 1427 allogeneic (30.3%), 3290 autologous (69.7%) - in 3808 patients between the years 1997 and 2008. Data were analysed for survival- and transplantation-related mortality (TRM) at day 100 and at 5 years. The data showed marked and significant differences between centres in unadjusted analyses. These differences were absent or marginal when the results were adjusted for disease, year of transplant and the EBMT risk score (a score incorporating patient age, disease stage, time interval between diagnosis and transplantation, and, for allogeneic transplants, donor type and donor-recipient gender combination) in a multivariable analysis. These data indicate comparable quality among centres in Switzerland. They show that comparison of crude centre-specific outcome data without adjustment for the patient mix may be misleading. Mandatory data collection and systematic review of all cases within a comprehensive quality management system might, in contrast, serve as a model to ascertain the quality of other cost-intensive therapies in Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE We have previously shown that retinal stem cells (RSCs) can be isolated from the radial glia population of the newborn mouse retina (Angénieux et al., 2006). These RSCs have a great capacity to renew and to generate a large number of neurons including cells differentiated towards the photoreceptor lineage (Mehri-Soussi et al., 2006). However, recent published results from our lab revealed that such cells have a poor integration and survival rate after grafting. The uncontrolled environment of a retina seems to prevent good integration and survival after grafting in vivo. To bypass this problem, we are evaluating the possibility of generating in vitro a hemi-retinal tissue before transplantation. METHODS RSC were expanded and cells passaged <10 were seeded in a solution containing poly-ethylene-glycol (PEG) polymer based hydrogels crosslinked with peptides that are chosen to be substrates for matrix metalloproteinases. Various doses of cross linkers peptides allowing connections between PEG polymers were tested. Different growth factors were studied to stimulate cell proliferation and differentiation. RESULTS Cells survived only in the presence of EGF and FGF-2 and generated colonies with a sphere shape. No cells migrated within the gel. To improve the migration and the repartition of the cells in the gels, the integrin ligand RGDSP was added into the gel. In the presence of FGF-2 and EGF, newly formed cell clusters appeared by cell proliferation within several days, but again no outspreading of cells was observed. No difference was even seen when the stiffness of the hydrogels or the concentration of the integrin ligand RGDSP were changed. However, our preliminary results show that RSCs still form spheres when laminin is entrapped in the gel, but they started to spread out having a neuronal morphology after around 2 weeks. The neuronal population was assessed by the presence of the neuronal marker b-tubulin-III. This differentiation was achieved after successive steps of stimulations including FGF-2 and EGF, and then only FGF-2. Glial cells were also present. Further characterizations are under process. CONCLUSIONS RSC can be grown in 3D. Preliminary results show that neuronal cell phenotype acquisition can be instructed by exogenous stimulations and factors linked to the gel. Further developments are necessary to form a homogenous tissue containing retinal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal degenerative diseases resulting in the loss of photoreceptors are one of the major causes of blindness. Photoreceptor replacement therapy is a promising treatment because the transplantation of retina-derived photoreceptors can be applied now to different murine retinopathies to restore visual function. To have an unlimited source of photoreceptors, we derived a transgenic embryonic stem cell (ESC) line in which the Crx-GFP transgene is expressed in photoreceptors and assessed the capacity of a 3D culture protocol to produce integration-competent photoreceptors. This culture system allows the production of a large number of photoreceptors recapitulating the in vivo development. After transplantation, integrated cells showed the typical morphology of mature rods bearing external segments and ribbon synapses. We conclude that a 3D protocol coupled with ESCs provides a safe and renewable source of photoreceptors displaying a development and transplantation competence comparable to photoreceptors from age-matched retinas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Multiple myeloma (MM) is the second most common hematologic malignancy after lymphomas In Finland: the annual incidence of MM is approximately 200. For three decades the median survival remained at 3 to 4 years from diagnosis until high-dose melphalan treatment supported by autologous stem cell transplantation (ASCT) became the standard of care for newly diagnosed MM since the mid 1990’s and the median survival increased to 5 – 6 years. This study focuses on three important aspects of ASCT, namely 1) stem cell mobilization, 2) single vs. double ASCT as initial treatment, and 3) the role of minimal residual disease (MRD) for longterm outcome. Aim. The aim of this series of studies was to evaluate the outcomes of MM patients and the ASCT procedure at the Turku University Central Hospital, Finland. First, we tried to identify which factors predict unsuccessful mobilization of autologous stem cells. Second, we compared the use of short-acting granulocyte-colony stimulating factor (GCSF) with long-acting G-CSF as mobilization agents. Third, one and two successive ASCTs were compared in 100 patients with MM. Fourth, for patients in complete response (CR) after stem cell transplantation (SCT), patient-specific probes for quantitative allele-specific oligonucleotide polymerase-chain reaction (qASO-PCR) measurements were designed to evaluate MRD and its importance for long-term outcome. Results. The quantity of previous chemotherapy and previous interferon use were significant pre-mobilization factors that predicted mobilization failure, together with some factors related to mobilization therapy itself, such as duration and degree of cytopenias and occurrence of sepsis. Short-acting and long-acting G-CSF combined with chemotherapy were comparable as stem cells mobilizers. The progression free (PFS) and overall survival (OS) tended to be longer after double ASCT than after single ASCT with a median follow-up time of 4 years, but this difference disappeared as the follow-up time increased. qASO-PCR was a good and sensitive divider of the CR patients into two prognostic groups: MRD low/negative (≤ 0.01%) and MRD high (>0.01%) groups with a significant difference in PFS and suggestively also in OS. Conclusions. When the factors prediciting a poor outcome of stem cell mobilization prevail, it is possible to identify those patients who need specific efforts to maximize the mobilization efficacy. Long-acting pegfilgrastim is a practical and effective alternative to short-acting filgrastim for mobilization therapy. There is no need to perform double ASCT on all eligible patients. MRD assessment with qASO-PCR is a sensitive method for evaluation of the depth of the CR response and can be used to predict long-term outcome after ACST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate the mixed lymphocyte culture as a predictive assay of acute and chronic graft-versus-host disease (GVHD). We studied 153 patients who received a first bone marrow transplantation from human leukocyte antigen-identical siblings. Acute GVHD was observed in 26 of 128 (20.3%) patients evaluated and chronic GVHD occurred in 60 of 114 (52.6%). One-way mixed lymphocyte culture (MLC) assays were performed by the standard method. MLC results are reported as the relative response (RR) from donor against patient cells. The responses ranged from -47.0 to 40.7%, with a median of 0.5%. The Kaplan-Meier probability of developing GVHD was determined for patients with positive and negative MLC. There was no significant difference in incidence of acute GVHD between the groups studied. However, the incidence of chronic GVHD was higher in recipients with RR >4.5% than in those with RR <=4.5%. The Cox Proportional Hazards model was used to examine the effect of MLC levels on incidence of chronic GVHD, while adjusting for the potential confounding effect of others suspected or observed risk factors. The relative risk of chronic GVHD was 2.5 for patients with positive MLC (RR >4.5%), 2.9 for those who received peripheral blood progenitor cells as a graft, and 2.2 for patients who developed previous acute GVHD. MLC was not useful for predicting acute GVHD, but MLC with RR >4.5% associated with other risk factors could predict the development of chronic GVHD, being of help for the prevention and/or treatment of this late complication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We transplanted 47 patients with Fanconi anemia using an alternative source of hematopoietic cells. The patients were assigned to the following groups: group 1, unrelated bone marrow (N = 15); group 2, unrelated cord blood (N = 17), and group 3, related non-sibling bone marrow (N = 15). Twenty-four patients (51%) had complete engraftment, which was not influenced by gender (P = 0.87), age (P = 0.45), dose of cyclophosphamide (P = 0.80), nucleated cell dose infused (P = 0.60), or use of anti-T serotherapy (P = 0.20). Favorable factors for superior engraftment were full HLA compatibility (independent of the source of cells; P = 0.007) and use of a fludarabine-based conditioning regimen (P = 0.046). Unfavorable factors were > or = 25 transfusions pre-transplant (P = 0.011) and degree of HLA disparity (P = 0.007). Intensity of mucositis (P = 0.50) and use of androgen prior to transplant had no influence on survival (P = 0.80). Acute graft-versus-host disease (GVHD) grade II-IV and chronic GVHD were diagnosed in 47 and 23% of available patients, respectively, and infections prevailed as the main cause of death, associated or not with GVHD. Eighteen patients are alive, the Kaplan-Meyer overall survival is 38% at ~8 years, and the best results were obtained with related non-sibling bone marrow patients. Three recommendations emerged from the present study: fludarabine as part of conditioning, transplant in patients with <25 transfusions and avoidance of HLA disparity. In addition, an extended family search (even when consanguinity is not present) seeking for a related non-sibling donor is highly recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow is a heterogeneous cell population which includes hematopoietic and mesenchymal progenitor cells. Dysregulated hematopoiesis occurs in chronic myelogenous leukemia (CML), being caused at least in part by abnormalities in the hematopoietic progenitors. However, the role of mesenchymal stem cells (MSCs) in CML has not been well characterized. The objectives of the present study were to observe the biological characteristics of MSCs from CML patients and to determine if MSCs originate in part from donors in CML patients after bone marrow transplantation (BMT). We analyzed MSCs from 5 untreated patients and from 3 CML patients after sex-mismatched allogeneic BMT. Flow cytometry analysis revealed the typical MSC phenotype and in vitro assays showed ability to differentiate into adipocytes and osteoblasts. Moreover, although some RT-PCR data were contradictory, combined fluorescence in situ hybridization analysis showed that MSCs from CML patients do not express the bcr-abl gene. Regarding MSCs of donor origin, although it is possible to detect Y target sequence by nested PCR, the low frequency (0.14 and 0.34%) of XY cells in 2 MSC CML patients by fluorescence in situ hybridization analysis suggests the presence of contaminant hematopoietic cells and the absence of host-derived MSCs in CML patients. Therefore, we conclude that MSCs from CML patients express the typical MSC phenotype, can differentiate into osteogenic and adipogenic lineages and do not express the bcr-abl gene. MSCs cannot be found in recipients 12 to 20 months after BMT. The influence of MSCs on the dysregulation of hematopoiesis in CML patients deserves further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced pluripotent stem cells (iPSC) have the capacity to self renew and differentiate into a myriad of cell types making them potential candidates for cell therapy and regenerative medicine. The goal of this thesis was to determine the characteristics of equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative medicine. Trauma to a horse’s limb often leads to the development of a chronic non-healing wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this thesis was that eiPSC might offer a solution for providing wound coverage for such problematic wounds. Prior to considering eiPSC for clinical applications, their immunogenicity must be studied to ensure that the transplanted cells will be accepted and integrate into host tissues. The first objective of this thesis was to determine the immune response to eiPSC. To investigate the immunogenicity of eiPSC, the expression of major histocompatibility complex (MHC) molecules by the selected lines was determined, then the cells were used in an intradermal transplantation model developed for this study. While transplantation of allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental horses, it did not cause acute rejection. This strategy enabled the selection of weakly immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic importance. Equine iPSC offer a potential solution to deficient epithelial coverage by providing a keratinocyte graft with the ability to differentiate into other accessory structures of the epidermis. The second objective of this thesis was to develop a protocol for the differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived vi keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was superior while the migratory capacity, measured as the ability to epithelialize in vitro wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in vivo wound models. In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the prion protein (PrP) is expressed on the surface of bone marrow cell populations enriched in long-term repopulating hematopoietic stem cells. Affinity purification of the PrP-positive and PrP-negative fractions from these populations, followed by competitive reconstitution assays, show that all long-term repopulating hematopoietic stem cells express PrP. Hematopoietic stem cells from PrP null bone marrow exhibit impaired self-renewal in serial competitive transplantation experiments, and premature exhaustion when exposed to cell cycle-specific myelotoxic injury. Therefore, PrP is a novel marker for hematopoietic stem cells and regulates their self-renewal.