987 resultados para Statistical services.
Resumo:
Measures of agro-ecosystems genetic variability are essential to sustain scientific-based actions and policies tending to protect the ecosystem services they provide. To build the genetic variability datum it is necessary to deal with a large number and different types of variables. Molecular marker data is highly dimensional by nature, and frequently additional types of information are obtained, as morphological and physiological traits. This way, genetic variability studies are usually associated with the measurement of several traits on each entity. Multivariate methods are aimed at finding proximities between entities characterized by multiple traits by summarizing information in few synthetic variables. In this work we discuss and illustrate several multivariate methods used for different purposes to build the datum of genetic variability. We include methods applied in studies for exploring the spatial structure of genetic variability and the association of genetic data to other sources of information. Multivariate techniques allow the pursuit of the genetic variability datum, as a unifying notion that merges concepts of type, abundance and distribution of variability at gene level.
Resumo:
The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative.
Resumo:
We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital?s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer?s real demand and the service?s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.
Resumo:
El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.
Resumo:
AH 173
Resumo:
Mode of access: Internet.
Resumo:
"Original guide published in 1964."
Resumo:
"National Cancer Institute, Division of Cancer Prevention and Control."
Resumo:
Mode of access: Internet.
Resumo:
"February 1981."
Resumo:
1970/71 report not issued.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.