901 resultados para Statistical modeling technique
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
Purpose –Increasingly the company websites, along with the intermediary websites such as portal sites have become an integral component of the firms brand strategy. This study emphasises the importance of website service elements within portal sites and the impact on e-retailer brand attitudes and brand identity in an ever more competitive digital market-space. Design/methodology/approach– The research employs structural equation modeling technique to capture the relationship among website attitude, e-service quality, brand attitude and brand identity. Findings–The results from the study indicate consumer attitude perceptions toward portal website and e-service elements combine to increase brand attitude and also brand identity for e-retailers. Originality/value –Although there has been a plethora of studies evaluating corporate websites and branding interactions there is limited comprehension of the impact of intermediary portal sites. Moreover, the literature is limited in validating the link between e-services with brand attitude and brand identity within a portal website context. This study develops a framework that highlights the important influence of e-services within portal websites and the impact on the firm’s brand.
Resumo:
One remaining difficulty in the Information Technology (IT) business value evaluation domain is the direct linkage between IT value and the underlying determinants of IT value or surrogates of IT value. This paper proposes a research that examines the interacting effects of the determinants of IT value, and their influences on IT value. The overarching research question is how those determinants interact with each other and affect the IT value at organizational value. To achieve this, this research embraces a multilevel, complex, and adaptive system view, where the IT value emerges from the interacting of underlying determinants. This research is theoretically grounded on three organizational theories – multilevel theory, complex adaptive systems theory, and adaptive structuration theory. By integrating those theoretical paradigms, this research proposes a conceptual model that focuses on the process where IT value is created from interactions of those determinants. To answer the research question, agent-based modeling technique is used in this research to build a computational representation based on the conceptual model. Computational experimentation will be conducted based on the computational representation. Validation procedures will be applied to consolidate the validity of this model. In the end, hypotheses will be tested using computational experimentation data.
Resumo:
A study on the vulnerability of biaxially loaded reinforced concrete (RC) circular columns in multi-story buildings under low- to medium-velocity impacts at shear-critical locations is presented. The study is based on a previously validated nonlinear explicit dynamic finite element (FE) modeling technique developed by the authors. The impact is simulated using force pulses generated from full-scale vehicle impact tests abundantly found in the literature with a view to quantifying the sensitivity of the design parameters of the RC columns under the typical impacts that are representative of the general vehicle population. The design parameters considered include the diameter and height of the column, the vertical steel ratio, the concrete grade, and the confinement effects. From the results of the simulations, empirical equations to quantify the critical impulses for the simplified design of the short, circular RC columns under the risk of shear-critical impacts are developed.
Resumo:
Objective This study examined whether maternal psychological distress mediates the relationship between presence of adolescent asthma and number of physician visits, and whether the association between maternal psychological distress and physician visits is moderated by adolescent general health. Methods Data were obtained from the Mater University Study of Pregnancy and included 4025 adolescents. Path analysis was used to examine mediating and moderating effects. Results Maternal psychological distress was found to partially mediate the relationship between adolescent asthma and number of physician visits, accounting for 25% of the effect of adolescent asthma on physician visits (p = .046). There was no evidence to suggest that adolescent general health moderated the association between maternal psychological distress and physician visits (p = .093). Conclusions The findings suggest that maternal psychological distress is associated with increased physician visits, regardless of adolescents' general health. Lowering maternal psychological distress may serve to reduce health care utilization and costs among adolescents with asthma.
Resumo:
Purpose – While many studies have predominantly looked at the benefits and risks of cloud computing, little is known whether and to what extent institutional forces play a role in cloud computing adoption. The purpose of this paper is to explore the role of institutional factors in top management team’s (TMT’s) decision to adopt cloud computing services. Design/methodology/approach – A model is developed and tested with data from an Australian survey using the partial least squares modeling technique. Findings – The results suggest that mimetic and coercive pressures influence TMT’s beliefs in the benefits of cloud computing. The results also show that TMT’s beliefs drive TMT’s participation, which in turn affects the intention to increase the adoption of cloud computing solutions. Research limitations/implications – Future studies could incorporate the influences of local actors who might also press for innovation. Practical implications – Given the influence of institutional forces and the plethora of cloud-based solutions on the market, it is recommended that TMTs exercise a high degree of caution when deciding for the types of applications to be outsourced as organizational requirements in terms of performance and security will differ. Originality/value – The paper contributes to the growing empirical literature on cloud computing adoption and offers the institutional framework as an alternative lens with which to interpret cloud-based information technology outsourcing.
Resumo:
Employees’ safety climate perceptions dictate their safety behavior because individuals act based on their perceptions of reality. Extensive empirical research in applied psychology has confirmed this relationship. However, rare efforts have been made to investigate the factors contributing to a favorable safety climate in construction research. As an initial effort to address the knowledge gap, this paper examines factors contributing to a psychological safety climate, an operationalization of a safety climate at the individual level, and, hence, the basic element of a safety climate at higher levels. A multiperspective framework of contributors to a psychological safety climate is estimated by a structural equation modeling technique using individual questionnaire responses from a random sample of construction project personnel. The results inform management of three routes to psychological safety climate: a client’s proactive involvement in safety management, a workforce-friendly workplace created by the project team, and transformational supervisors’ communication about safety matters with the workforce. This paper contributes to the field of construction engineering and management by highlighting a broader contextual influence in a systematic formation of psychological safety climate perceptions.
Resumo:
Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are discussed with respect to their structural and material properties. Explicit granular simulation methods are adopted with different coarse-grained strategies for these cytoskeleton components and the simulation details are introduced in this review.
Resumo:
Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Periglacial processes act on cold, non-glacial regions where the landscape deveploment is mainly controlled by frost activity. Circa 25 percent of Earth's surface can be considered as periglacial. Geographical Information System combined with advanced statistical modeling methods, provides an efficient tool and new theoretical perspective for study of cold environments. The aim of this study was to: 1) model and predict the abundance of periglacial phenomena in subarctic environment with statistical modeling, 2) investigate the most import factors affecting the occurence of these phenomena with hierarchical partitioning, 3) compare two widely used statistical modeling methods: Generalized Linear Models and Generalized Additive Models, 4) study modeling resolution's effect on prediction and 5) study how spatially continous prediction can be obtained from point data. The observational data of this study consist of 369 points that were collected during the summers of 2009 and 2010 at the study area in Kilpisjärvi northern Lapland. The periglacial phenomena of interest were cryoturbations, slope processes, weathering, deflation, nivation and fluvial processes. The features were modeled using Generalized Linear Models (GLM) and Generalized Additive Models (GAM) based on Poisson-errors. The abundance of periglacial features were predicted based on these models to a spatial grid with a resolution of one hectare. The most important environmental factors were examined with hierarchical partitioning. The effect of modeling resolution was investigated with in a small independent study area with a spatial resolution of 0,01 hectare. The models explained 45-70 % of the occurence of periglacial phenomena. When spatial variables were added to the models the amount of explained deviance was considerably higher, which signalled a geographical trend structure. The ability of the models to predict periglacial phenomena were assessed with independent evaluation data. Spearman's correlation varied 0,258 - 0,754 between the observed and predicted values. Based on explained deviance, and the results of hierarchical partitioning, the most important environmental variables were mean altitude, vegetation and mean slope angle. The effect of modeling resolution was clear, too coarse resolution caused a loss of information, while finer resolution brought out more localized variation. The models ability to explain and predict periglacial phenomena in the study area were mostly good and moderate respectively. Differences between modeling methods were small, although the explained deviance was higher with GLM-models than GAMs. In turn, GAMs produced more realistic spatial predictions. The single most important environmental variable controlling the occurence of periglacial phenomena was mean altitude, which had strong correlations with many other explanatory variables. The ongoing global warming will have great impact especially in cold environments on high latitudes, and for this reason, an important research topic in the near future will be the response of periglacial environments to a warming climate.
Resumo:
We present a improved language modeling technique for Lempel-Ziv-Welch (LZW) based LID scheme. The previous approach to LID using LZW algorithm prepares the language pattern table using LZW algorithm. Because of the sequential nature of the LZW algorithm, several language specific patterns of the language were missing in the pattern table. To overcome this, we build a universal pattern table, which contains all patterns of different length. For each language it's corresponding language specific pattern table is constructed by retaining the patterns of the universal table whose frequency of appearance in the training data is above the threshold.This approach reduces the classification score (Compression Ratio [LZW-CR] or the weighted discriminant score[LZW-WDS]) for non native languages and increases the LID performance considerably.
Resumo:
In this paper we report a modeling technique and analysis of wave dispersion in a cellular composite laminate with spatially modulated microstructure, which can be modeled by parameterization and homogenization in an appropriate length scale. Higher order beam theory is applied and the system of wave equations are derived. Homogenization of these equations are carried out in the scale of wavelength and frequency of the individual wave modes. Smaller scale scattering below the order of cell size are filtered out in the present approach. The longitudinal dispersion relations for different values of a modulation parameter are analyzed which indicates the existence of stop and pass band patterns. Dispersion relations for flexural-shear case are also analyzed which indicates a tendency toward forming the stop and pass bands for increasing values of a shear stiffness modulation parameter. The effect the phase angle (θ) of the incident wave indicates the existence more number of alternative stop bands and pass bands for θ = 45°.
Resumo:
Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.