929 resultados para Static synchronous compensator
Resumo:
Electric Vehicles (EVs) are increasingly used nowadays, and different powertrain solutions can be adopted. This paper describes the control system of an axial flux Permanent Magnet Synchronous Motor (PMSM) for EVs powertrain. It is described the implemented Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique. Also, the mathematical model of the PMSM is presented. Both, simulation and experimental, results with different types of mechanical load are presented. The experimental results were obtained using a laboratory test bench. The obtained results are discussed.
Resumo:
In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.
Resumo:
Mussel populations on the Irish Atlantic coast comprise an interbreeding mixture of the blue mussel, Mytilus edulis (L.) and the Mediterranean mussel, Mytilus galloprovincialis (Lmk.). The occurrence of hybrid genotypes varies between sites but can be as high 80%. This study compares the reproductive cycle of M. edulis, M. galloprovincialis and their hybrids to determine if the extensive hybridisation observed at Irish Atlantic coast sites is linked to spawning synchrony between the two taxa. Mussels (40-45 mm size class) were collected monthly from a sheltered shore in Galway Bay from January to December 2005. Two major spawning events (March- June and September-October) were observed and gametogenesis took place throughout the year. The spawning cycles of the three taxa were largely overlapping. Small differences were observed in the timing of peak spawning which occurred in March and October in M. galloprovincialis and in May-June and September in M.edulis. Spawning of hybrid individuals was intermediate between the parental genotypes. Fecundity was slightly higher in M. galloprovincialis females compared to the other taxa (up to 30% difference, p<0.05). This apparent advantage is not shared by the sexes and is likely being offset by high numbers of hybrid genotypes releasing gametes during peak spawning of M. galloprovincialis. There was no evidence for increased mortality in hybrid males; sex ratios did not deviate from the 1:1 ratio. The results show that in this region of the hybrid zone the timing of reproduction does not present a barrier to gene flow between M. edulis and M. galloprovincialis. Nonetheless, small differences in the timing of peak spawning may increase the likelihood of conspecific fertilisation at certain times of the year. Hybrids outnumber the parental genotypes, undergo complete gametogenesis and show no evidence of depressed fitness (i.e. hybrids are reproductively competent suggesting a high degree of introgression.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2011
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik, Univ., Dissertation, 2015
Resumo:
v. 8 no. 9
Resumo:
BACKGROUND: Adaptations to Internal (IR) and external (ER) rotator shoulder muscles improving overhead throwing kinematics could lead to muscular strength imbalances and be considered an intrinsic risk factor for shoulder injury, as well as modified shoulder range of motion (RoM). OBJECTIVE: To establish profiles of internal and external rotation RoM and isokinetic IR and ER strength in adolescent- and national-level javelin throwers. METHODS: Fourteen healthy subjects were included in this preliminary cross-sectional study, 7 javelin throwers (JTG) and 7 nonathletes (CG). Passive internal and external rotation RoM were measured at 90 degrees of shoulder abduction. Isokinetic strength of dominant and non-dominant IR and ER was evaluated during concentric (60, 120 and 240 degrees/s) and eccentric (60 degrees/s) contractions by Con-Trex (R) dynamometer with the subject in a seated position with 45 degrees of shoulder abduction in the scapular plane. RESULTS: We reported significantly lower internal rotation and significantly higher external rotation RoM in JTG than in CG. Concentric and eccentric IR and ER strength were significantly higher for the dominant shoulder side in JTG (P < 0.05), without significant differences in ER/IR ratios. CONCLUSIONS: The main finding of this preliminary study confirmed static and dynamic shoulder stabilizer adaptations due to javelin throw practice in a population of adolescent- and national-level javelin throwers.
Resumo:
This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.
Resumo:
Aim: To investigate static and dynamic visuospatial working memory (VSWM) processes in first-episode psychosis (FEP) patients and explore the validity of such measures as specific trait markers of schizophrenia. Methods: Twenty FEP patients and 20 age-, sex-, laterality- and education-matched controls carried out a dynamic and static VSWM paradigm. At 2-year follow up 13 patients met Diagnostic and Statistical Manual (of Mental Health Disorders) - Fourth Edition (DSM-IV) criteria for schizophrenia, 1 for bipolar disorder, 1 for brief psychotic episode and 5 for schizotypal personality disorder. Results: Compared with controls, the 20 FEP patients showed severe impairment in the dynamic VSWM condition but much less impairment in the static condition. No specific bias in stimulus selection was detected in the two tasks. Two-year follow-up evaluations suggested poorer baseline scores on the dynamic task clearly differentiated the 13 FEP patients who developed schizophrenia from the seven who did not. Conclusions: Results suggest deficits in VSWM in FEP patients. Specific exploratory analyses further suggest that deficit in monitoring-manipulation VSWM processes, especially involved in our dynamic VSWM task, can be a reliable marker of schizophrenia.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
Axial deflection of DNA molecules in solution results from thermal motion and intrinsic curvature related to the DNA sequence. In order to measure directly the contribution of thermal motion we constructed intrinsically straight DNA molecules and measured their persistence length by cryo-electron microscopy. The persistence length of such intrinsically straight DNA molecules suspended in thin layers of cryo-vitrified solutions is about 80 nm. In order to test our experimental approach, we measured the apparent persistence length of DNA molecules with natural "random" sequences. The result of about 45 nm is consistent with the generally accepted value of the apparent persistence length of natural DNA sequences. By comparing the apparent persistence length to intrinsically straight DNA with that of natural DNA, it is possible to determine both the dynamic and the static contributions to the apparent persistence length.
Real-Time implementation of a blind authentication method using self-synchronous speech watermarking
Resumo:
A blind speech watermarking scheme that meets hard real-time deadlines is presented and implemented. In addition, one of the key issues in these block-oriented watermarking techniques is to preserve the synchronization. Namely, to recover the exact position of each block in the mark extract process. In fact, the presented scheme can be split up into two distinguished parts, the synchronization and the information mark methods. The former is embedded into the time domain and it is fast enough to be run meeting real-time requirements. The latter contains the authentication information and it is embedded into the wavelet domain. The synchronization and information mark techniques are both tunable in order to allow a con gurable method. Thus, capacity, transparency and robustness can be con gured depending on the needs. It makes the scheme useful for professional applications, such telephony authentication or even sending information throw radio applications.
Resumo:
During the Early Toarcian, major paleoenvironnemental and paleoceanographical changes occurred, leading to an oceanic anoxic event (OAE) and to a perturbation of the carbon isotope cycle. Although the standard biochronology of the Lower Jurassic is essentially based upon ammonites, in recent years biostratigraphy based on calcareous nannofossils and dinoflagellate cysts is increasingly used to date Jurassic rocks. However, the precise dating and correlation of the Early Toarcian OAE, and of the associated delta C-13 anomaly in different settings of the western Tethys, are still partly problematic, and it is still unclear whether these events are synchronous or not. In order to allow more accurate correlations of the organic rich levels recorded in the Lower Toarcian OAE, this account proposes a new biozonation based on a quantitative biochronology approach, the Unitary Associations (UA), applied to calcareous nannofossils. This study represents the first attempt to apply the UA method to Jurassic nannofossils. The study incorporates eighteen sections distributed across western Tethys and ranging from the Pliensbachian to Aalenian, comprising 1220 samples and 72 calcareous nannofossil taxa. The BioGraph [Savary, J., Guex, J., 1999. Discrete biochronological scales and unitary associations: description of the Biograph Computer program. Memoires de Geologie de Lausanne 34, 282 pp] and UA-Graph (Copyright Hammer O., Guex and Savary, 2002) softwares provide a discrete biochronological framework based upon multi-taxa concurrent range zones in the different sections. The optimized dataset generates nine UAs using the co-occurrences of 56 taxa. These UAs are grouped into six Unitary Association Zones (UA-Z), which constitute a robust biostratigraphic synthesis of all the observed or deduced biostratigraphic relationships between the analysed taxa. The UA zonation proposed here is compared to ``classic'' calcareous nannofossil biozonations, which are commonly used for the southern and the northern sides of Tethys. The biostratigraphic resolution of the UA-Zones varies from one nannofossil subzone or part of it to several subzones, and can be related to the pattern of calcareous nannoplankton originations and extinctions during the studied time interval. The Late Pliensbachian - Early Toarcian interval (corresponding to the UA-Z II) represents a major step in the Jurassic nannoplankton radiation. The recognized UA-Zones are also compared to the carbon isotopic negative excursion and TOC maximum in five sections of central Italy, Germany and England, with the aim of providing a more reliable correlation tool for the Early Toarcian OAE, and of the associated isotopic anomaly, between the southern and northern part of western Tethys. The results of this work show that the TOC maximum and delta C-13 negative excursion correspond to the upper part of the UA-Z II (i.e., UA 3) in the sections analysed. This suggests that the Early Toarcian OAE was a synchronous event within the western Tethys. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small