983 resultados para Stabile Isotope
Resumo:
Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation 'thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus δ13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the δ13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C3) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography.
Resumo:
An analytical method for the measurement of five naturally occurring bromophenols of sensory relevance in seafood (barramundi and prawns) is presented. The method combines simultaneous distillation−extraction followed by alkaline back extraction of a hexane extract and subsequent acetylation of the bromophenols. Analysis of the bromophenol acetates was accomplished by headspace solid phase microextraction and gas chromatography−mass spectrometry using selected ion monitoring. The addition of 13C6 bromophenol stable isotope internal standards for each of the five congeners studied permitted the accurate quantitation of 2-bromophenol, 4-bromophenol, 2,6-dibromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol down to a limit of quantification of 0.05 ng/g of fish flesh. The method indicated acceptable precision and repeatability and excellent linearity over the typical concentration range of these compounds in seafood (0.5−50 ng/g). The analytical method was applied to determine the concentration of bromophenols in a range of farmed and wild barramundi and prawns and was also used to monitor bromophenol uptake in a pilot feeding trial.
Resumo:
The significance of cannibalism in the diet of juvenile pond-cultured blue swimmer crabs (Portunus pelagicus (L.)) was investigated using dual stable isotope analysis of carbon and nitrogen. In a laboratory feeding experiment, δ15N demonstrated a constant trophic shift (Δδ15N ≈+ 1.6‰), and therefore seemed to be a reliable indicator for assessing trophic position for P. pelagicus. This agrees with previously reported trends. Difference in growth rate did not seem to influence δ15N values. In contrast, δ13C did not display consistent shifts between trophic levels (range of Δδ13C: + 1 to + 1.7‰). The results from the pond experiment showed that larger individuals had a more enriched δ15N than smaller individuals, which, when compared to the results from the laboratory experiment, indicates that larger individuals were at a higher trophic level. This is most likely due to cannibalism prevailing in the pond rather than a direct result of faster growth rate. Cannibalistic behaviour might further increase growth, resulting in the observed positive correlation between size and δ15N.
Resumo:
The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"
Resumo:
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.The ISME Journal advance online publication, 13 March 2014; doi:10.1038/ismej.2014.25.
Resumo:
The driving force behind this study has been the need to develop and apply methods for investigating the hydrogeochemical processes of significance to water management and artificial groundwater recharge. Isotope partitioning of elements in the course of physicochemical processes produces isotopic variations to their natural reservoirs. Tracer property of the stable isotope abundances of oxygen, hydrogen and carbon has been applied to investigate hydrogeological processes in Finland. The work described here has initiated the use of stable isotope methods to achieve a better understanding of these processes in the shallow glacigenic formations of Finland. In addition, the regional precipitation and groundwater records will supplement the data of global precipitation, but as importantly, provide primary background data for hydrological studies. The isotopic composition of oxygen and hydrogen in Finnish groundwaters and atmospheric precipitation was determined in water samples collected during 1995 2005. Prior to this study, no detailed records existed on the spatial or annual variability of the isotopic composition of precipitation or groundwaters in Finland. Groundwaters and precipitation in Finland display a distinct spatial distribution of the isotopic ratios of oxygen and hydrogen. The depletion of the heavier isotopes as a function of increasing latitude is closely related to the local mean surface temperature. No significant differences were observed between the mean annual isotope ratios of oxygen and hydrogen in precipitation and those in local groundwaters. These results suggest that the link between the spatial variability in the isotopic composition of precipitation and local temperature is preserved in groundwaters. Artificial groundwater recharge to glaciogenic sedimentary formations offers many possibilities to apply the isotopic ratios of oxygen, hydrogen and carbon as natural isotopic tracers. In this study the systematics of dissolved carbon have been investigated in two geochemically different glacigenic groundwater formations: a typical esker aquifer at Tuusula, in southern Finland and a carbonate-bearing aquifer with a complex internal structure at Virttaankangas, in southwest Finland. Reducing the concentration of dissolved organic carbon (DOC) in water is a primary challenge in the process of artificial groundwater recharge. The carbon isotope method was used to as a tool to trace the role of redox processes in the decomposition of DOC. At the Tuusula site, artificial recharge leads to a significant decrease in the organic matter content of the infiltrated water. In total, 81% of the initial DOC present in the infiltrated water was removed in three successive stages of subsurface processes. Three distinct processes in the reduction of the DOC content were traced: The decomposition of dissolved organic carbon in the first stage of subsurface flow appeared to be the most significant part in DOC removal, whereas further decrease in DOC has been attributed to adsorption and finally to dilution with local groundwater. Here, isotope methods were used for the first time to quantify the processes of DOC removal in an artificial groundwater recharge. Groundwaters in the Virttaankangas aquifer are characterized by high pH values exceeding 9, which are exceptional for shallow aquifers on glaciated crystalline bedrock. The Virttaankangas sediments were discovered to contain trace amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. Understanding the origin of the unusual geochemistry of the Virttaankangas groundwaters is an important issue for constraining the operation of the future artificial groundwater plant. The isotope ratios of oxygen and carbon in sedimentary carbonate minerals have been successfully applied to constrain the origin of the dispersed calcite in the Virttaankangas sediments. The isotopic and chemical characteristics of the groundwater in the distinct units of aquifer were observed to vary depending on the aquifer mineralogy, groundwater residence time and the openness of the system to soil CO2. The high pH values of > 9 have been related to dissolution of calcite into groundwater under closed or nearly closed system conditions relative to soil CO2, at a low partial pressure of CO2.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Resumo:
This work examines stable isotope ratios of carbon, oxygen and hydrogen in annual growth rings of trees. Isotopic composition in wood cellulose is used as a tool to study past climate. The method benefits from the accurate and precise dating provided by dendrochronology. In this study the origin, nature and the strength of climatic correlations are studied on different temporal scales and at different sites in Finland. The origin of carbon isotopic signal is in photosynthetic fractionation. The basic physical and chemical fractionations involved are reasonably well understood. This was confirmed by measuring instantaneous photosynthetic discrimination on Scots pine (Pinus sylvestris L.). The internal conductance of CO2 was recognized to have a significant impact on the observed fractionation, and further investigations are suggested to quantify its role in controlling the isotopic signal of photosynthates. Isotopic composition of the produced biomass can potentially be affected by variety of external factors that induce physiological changes in trees. Response of carbon isotopic signal in tree ring cellulose to changes in resource availability was assessed in a manipulation experiment. It showed that the signal was relatively stable despite of changes in water and nitrogen availability to the tree. Palaeoclimatic reconstructions are typically based on functions describing empirical relationship between isotopic and climatic parameters. These empirical relationships may change depending on the site conditions, species and timeframe studied. Annual variation in Scots pine tree ring carbon and oxygen isotopic composition was studied in northern and in central eastern Finland and annual variation in tree ring latewood carbon, oxygen and hydrogen isotopic ratio in Oak (Quercus robur L.) was studied in southern Finland. In all of the studied sites at least one of the studied isotope ratios was shown to record climate strongly enough to be used in climatic reconstructions. Using the observed relationships, four-century-long climate reconstructions from living Scots pine were created for northern and central eastern Finland. Also temporal stability of the relationships between three proxy indicators, tree ring growth and carbon and oxygen isotopic composition was studied during the four-hundred-year period. Isotope ratios measured from tree rings in Finland were shown to be sensitive indicators of climate. Increasing understanding of environmental controls and physiological mechanisms affecting tree ring isotopic composition will make possible more accurate interpretation of isotope data. This study also demonstrated that by measuring multiple isotopes and physical proxies from the same tree rings, additional information on tree physiology can be obtained. Thus isotopic ratios measured from tree ring cellulose provide means to improve the reliability of climate reconstructions.
Resumo:
The long-range deuterium isotope effects on13C nuclear shielding are physically not yet completely understood. Two existing models for explaining these effects, vibrational and substituent, are compared here. The vibrational model is based on the Born-Oppenheimer approximation, but it can explain only one-bond deuterium effects. To the contrary, the substituent model may explain many long-range isotope effects, but it is controversial due to the assumption of some distinct electronic properties of isotopes. We explain how long-range deuterium isotope effects may be rationalized by the subtle electronic changes induced by isotope substitution, which does not violate the Born-Oppenheimer approximation.
Resumo:
Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the ?13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in ?13C values of collagen in sub-adult (range -10.5� to-22.7�, variance=14.51) compared to adult animals (range -16.0� to -20.3�, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.
Resumo:
The combined mechanism involving phonon and lochon (local charged boson) induced pairing of fermions developed earlier for cuprate superconductors is used to study the variation of the oxygen isotope effect (alpha(0)) in these systems. The recently observed results for some cuprates are in agreement with the calculated trend in which (alpha(0)) tends to larger value when the critical temperature (T-c) is reduced by appropriate doping. These results support the combined phononic and electronic (lochonic) mechanism for cuprates with the latter dominating in the higher T-c regions.
Resumo:
A detailed theoretical study of solvation dynamics in water is presented. The motivation of the present study comes from the recent experimental observation that the dynamics of solvation of an ion in water is ultrafast and the solvation time correlation function decays with a time constant of about 55 fs. The slower decay in the long time can be described by a sum of two exponentials with time constants equal to 126 and 880 fs. The molecular theory (developed earlier) predicts a time constant equal to 52 fs for the initial Gaussian decay and time constants equal to 134 and 886 fs for the two exponential components at the long time. This nearly perfect agreement is obtained by using the most detailed dynamical information available in the literature. The present study emphasizes the importance of the intermolecular vibrational band originating from the O...O stretching mode of the O�H...O units in the initial dynamics and raises several interesting questions regarding the nature of the decay of this mode. We have also studied the effects of isotope substitution on solvation dynamics. It is predicted that a significant isotope effect may be observed in the long time. The experimental results have also been compared with the prediction of the dynamic mean spherical approximation (DMSA); the agreement is not satisfactory at the long time. It is further found that the molecular theory and the DMSA lead to virtually identical results if the translational modes of the solvent molecules are neglected in the former. DMSA has also been used to investigate the dynamics of solvation of a dipolar solute in water. It is found that the dynamics of dipolar solvation exhibit features rather different from those of ion solvation. © 1995 American Institute of Physics.