990 resultados para Spreading Resistance Microscopy
Resumo:
Scanning force microscopy was used to image rat basophilic leukemia (RBL-2H3) cell surfaces under different stimulation conditions that either permit or inhibit secretion. Cross-linking the surface IgE receptors with dinitrophenol-conjugated bovine serum albumin initiates secretion in RBL cells with concomitant spreading of the cell body. Structures at the cell surface approximately 1.5 microns in diameter relate to secretion both spatially and temporally. The position of these surface pits and their sizes suggest that they may be related to the dense-core granules positioned along the cytoskeletal filaments in detergent-extracted, unactivated RBL cell processes. Topographic scanning force microscopy images of RBL cell surfaces at 2, 5, and 35 min after activation show that these structures persist and change in cross-sectional profile with time after activation. These structures may be related to the membrane retrieval mechanism of cells after intense stimulation.
Resumo:
Healthcare-associated infections (HAI) are a major public health problem being Klebsiella pneumoniae and nontuberculous mycobacteria, both with high antibiotic resistance rates, among their etiological agent. Since biofilme assembly is pointed as one of the mechanisms involved in emergence of antibiotic resistance understanding bacteria organization within the biofilm and the identification of differences between planktonic and sessile forms of bacteria will be a step forward to fight HAI. In the present work we used SEM as a tool to characterize the internal structure of biofilm assembled on different surfaces. For SEM analysis, biofilms were allowed to form either on six-well cell culture plates, silicon or metallic disks placed inside the wells for different incubation periods at 37 °C. The biofilm assembled on the cell culture dish was for both secondary and backscattered electron analysis as described before. Biofilms assembled on silicon disks instead of being sectioned were prepared as metallographic samples, by grinding with grit SIC paper and polishing with diamond particles. Samples were cleaned (70% ethanol), dried with hot air, further coated and analysed. A preliminary study using FIB-SEM has been performed to access the ultrastructure of biofilms assembled on metallic surfaces. The results obtained showed that the same bacteria assembled biofilms with different ratios of biomass and extracellular matrix depending on the surface. SEM performed on thin sections of biofilms is a powerful tool to elucidate biofilm structure allowing the quantification of the major components. FIB-SEM is also a promising tool in this field.
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.
Resumo:
PURPOSE: Breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter expressed at the blood cerebrospinal fluid barrier (BCSFB), and influences distribution of drugs into the central nervous systems (CNS). Current inhibitors have failed clinically due to neurotoxicity. Novel approaches are needed to identify new modulators to enhance CNS delivery. This study examines 18 compounds (mainly phytoestrogens) as modulators of the expression/function of BCRP in an in vitro rat choroid plexus BCSFB model. METHODS: Modulators were initially subject to cytotoxicity (MTT) assessment to determine optimal non-toxic concentrations. Reverse-transcriptase PCR and confocal microscopy were used to identify the presence of BCRP in Z310 cells. Thereafter modulation of the intracellular accumulation of the fluorescent BCRP probe substrate Hoechst 33342 (H33342), changes in protein expression of BCRP (western blotting) and the functional activity of BCRP (membrane insert model) were assessed under modulator exposure. RESULTS: A 24 hour cytotoxicity assay (0.001 µM-1000 µM) demonstrated the majority of modulators possessed a cellular viability IC50 > 148 µM. Intracellular accumulation of H33342 was significantly increased in the presence of the known BCRP inhibitor Ko143 and, following a 24 hour pre-incubation, all modulators demonstrated statistically significant increases in H33342 accumulation (P < 0.001), when compared to control and Ko143. After a 24 hour pre-incubation with modulators alone, a 0.16-2.5-fold change in BCRP expression was observed for test compounds. The functional consequences of this were confirmed in a permeable insert model of the BCSFB which demonstrated that 17-β-estradiol, naringin and silymarin (down-regulators) and baicalin (up-regulator) can modulate BCRP-mediated transport function at the BCSFB. CONCLUSION: We have successfully confirmed the gene and protein expression of BCRP in Z310 cells and demonstrated the potential for phytoestrogen modulators to influence the functionality of BCRP at the BCSFB and thereby potentially allowing manipulation of CNS drug disposition.
Resumo:
In 2012, were estimated 6.7 million cases of healthcare-associated infections (HAI) either in long-term care facilities or acute-care hospitals from which result 37,000 deaths configuring a serious public health problem. The etiological agents are diverse and often resistant to antimicrobial drugs. One of the mechanisms responsible for the emergence of drug resistance is biofilm assembly. Biofilms are defined as thin layers of microorganisms adhering to the surface of a structure, which may be organic or inorganic, together with the polymers that they secrete. They are dynamic structures which experience different stages of organization with the ageing and are linked to an increase in bacterial resistance to host defense mechanisms, antibiotics, sterilization procedures other than autoclaving, persistence in water distribution systems and other surfaces. The understanding of bacteria organization within the biofilm and the identification of differences between planktonic and sessile forms of bacteria will be a step forward to fight HAIs.
Resumo:
Pandemic methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 97 (CC97) lineages originated from livestock-to-human host jumps. In recent years, CC97 has become one of the major MRSA lineages detected in Italian farmed animals. The aim of this study was to characterize and analyze differences in MRSA and methicillin-susceptible S. aureus (MSSA) mainly of swine and bovine origins. Forty-seven CC97 isolates, 35 MRSA isolates, and 6 MSSA isolates from different Italian pig and cattle holdings; 5 pig MRSA isolates from Germany; and 1 human MSSA isolate from Spain were characterized by macrorestriction pulsed-field gel electrophoresis (PFGE) analysis, multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and antimicrobial resistance pattern analysis. Virulence and resistance genes were investigated by PCR and microarray analysis. Most of the isolates were of SCCmec type V (SCCmec V), except for two German MRSA isolates (SCCmec III). Five main clusters were identified by PFGE, with the German isolates (clusters I and II) showing 60.5% similarity with the Italian isolates, most of which (68.1%) grouped into cluster V. All CC97 isolates were Panton-Valentine leukocidin (PVL) negative, and a few (n = 7) tested positive for sak or scn. All MRSA isolates were multidrug resistant (MDR), and the main features were erm(B)- or erm(C)-mediated (n = 18) macrolide-lincosamide-streptogramin B resistance, vga(A)-mediated (n = 37) pleuromutilin resistance, fluoroquinolone resistance (n = 33), tet(K) in 32/37 tet(M)-positive isolates, and blaZ in almost all MRSA isolates. Few host-associated differences were detected among CC97 MRSA isolates: their extensive MDR nature in both pigs and dairy cattle may be a consequence of a spillback from pigs of a MRSA lineage that originated in cattle as MSSA and needs further investigation. Measures should be implemented at the farm level to prevent spillover to humans in intensive farming areas.
Resumo:
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Resumo:
The aim of this study was to evaluate the effectiveness of 17% ethylene-diamine-tetra-acetic acid (EDTA) used alone or associated with 2% chlorhexidine gel (CHX) on intracanal medications (ICM) removal. Sixty single-rooted human teeth with fully formed apex were selected. The cervical and middle thirds of each canal were prepared with Gates Glidden drills and rotary files. The apical third was shaped with hand files. The specimens were randomly divided into two groups depending on the ICM used after instrumentation: calcium hydroxide Ca(OH)(2) +CHX or Ca(OH)(2) +sterile saline (SS). After seven days, each group was divided into subgroups according to the protocol used for ICM removal: instrumentation and irrigation either with EDTA, CHX+EDTA, or SS (control groups). All specimens were sectioned and processed for observation of the apical thirds by using scanning electron microscopy. Two calibrated evaluators attributed scores to each specimen. The differences between the protocols for ICM removal were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Friedman and Wilcoxon signed rank tests were used for comparison between the score of debris obtained in each root canal third. Remains of Ca(OH)(2) were found in all specimens independently of the protocol and ICM used (P > 0.05). Seventeen percent EDTA showed the best results in removing ICM when used alone (P < 0.05), particularly in those associated with CHX. It was concluded that the chelating agent 17% EDTA significantly improved the removal of ICM when used alone. Furthermore, the type of the vehicle associated with Ca(OH)(2) also plays a role in the ICM removal.
Resumo:
To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents. Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and biochemical evaluation. The pubertal stage was obtained by self-assessment, and the blood pressure, by auscultation. Insulin resistance was evaluated by the Homeostasis Model Assessment-Insulin Resistance. The correlation between two variables was evaluated by partial correlation coefficient adjusted for the percentage of body fat and pubertal stage. The performance of neck circumference to identify insulin resistance was tested by Receiver Operating Characteristic Curve. After the adjustment for percentage body fat and pubertal stage, neck circumference correlated with waist circumference, blood pressure, triglycerides and markers of insulin resistance in both genders. The results showed that the neck circumference is a useful tool for the detection of insulin resistance and changes in the indicators of metabolic syndrome in adolescents. The easiness of application and low cost of this measure may allow its use in Public Health services.
Resumo:
To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior.
Resumo:
This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.
Resumo:
To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Resumo:
Obesity is increasing worldwide and is triggered, at least in part, by enhanced caloric intake. Food intake is regulated by a complex mechanism involving the hypothalamus and hindbrain circuitries. However, evidences have showing that reward systems are also important in regulating feeding behavior. In this context, amygdala is considered a key extra-hypothalamic area regulating feeding behavior in human beings and rodents. This review focuses on the regulation of food intake by amygdala and the mechanisms of insulin resistance in this brain area. Similar to the hypothalamus the anorexigenic effect of insulin is mediated via PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) pathway in the amygdala. Insulin decreases NPY (neuropeptide Y) and increases oxytocin mRNA levels in the amygdala. High fat diet and saturated fatty acids induce inflammation, ER (endoplasmic reticulum) stress and the activation of serine kinases such as PKCθ (protein kinase C theta), JNK (c-Jun N-terminal kinase) and IKKβ (inhibitor of nuclear factor kappa-B kinase beta) in the amygdala, which have an important role in insulin resistance in this brain region. Overexpressed PKCθ in the CeA (central nucleus of amygdala) of rats increases weight gain, food intake, insulin resistance and hepatic triglycerides content. The inhibition of ER stress ameliorates insulin action/signaling, increases oxytocin and decreases NPY gene expression in the amygdala of high fat feeding rodents. Those data suggest that PKCθ and ER stress are main mechanisms of insulin resistance in the amygdala of obese rats and play an important role regulating feeding behavior.