993 resultados para Spontaneously Hypertensive Rat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin-converting enzyme inhibitors reduce blood pressure and attenuate cardiac and vascular remodeling in hypertension. However, the kinetics of remodeling after discontinuation of the long-term use of these drugs are unknown. Our objective was to investigate the temporal changes occurring in blood pressure and vascular structure of spontaneously hypertensive rats (SHR). Captopril treatment was started in the pre-hypertensive state. Rats (4 weeks) were assigned to three groups: SHR-Cap (N = 51) treated with captopril (1 g/L) in drinking water from the 4th to the 14th week; SHR-C (N = 48) untreated SHR; Wistar (N = 47) control rats. Subgroups of animals were studied at 2, 4, and 8 weeks after discontinuation of captopril. Direct blood pressure was recorded in freely moving animals after femoral artery catheterism. The animals were then killed to determine left ventricular hypertrophy (LVH) and the aorta fixed at the same pressure measured in vivo. Captopril prevented hypertension (105 ± 3 vs 136 ± 5 mmHg), LVH (2.17 ± 0.05 vs 2.97 ± 0.14 mg/g body weight) and the increase in cross-sectional area to luminal area ratio of the aorta (0.21 ± 0.01 vs 0.26 ± 0.02 μm²) (SHR-Cap vs SHR-C). However, these parameters increased progressively after discontinuation of captopril (22nd week: 141 ± 2 mmHg, 2.50 ± 0.06 mg/g, 0.27 ± 0.02 μm²). Prevention of the development of hypertension in SHR by using captopril during the prehypertensive period prevents the development of cardiac and vascular remodeling. Recovery of these processes follows the kinetic of hypertension development after discontinuation of captopril.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of low ouabain concentrations on systolic (SAP) and diastolic (DAP) arterial pressures and on pressor reactivity in 3-month-old male spontaneously hypertensive rats (SHR). Arterial blood pressure (BP) and pressor reactivity to phenylephrine (PHE) were investigated before and after 0.18 μg/kg ouabain administration (N = 6). The influence of hexamethonium (N = 6), canrenone (N = 6), enalapril (N = 6), and losartan (N = 6) on ouabain actions was evaluated. Ouabain increased BP (SAP: 137 ± 5.1 to 150 ± 4.7; DAP: 93.7 ± 7.7 to 116 ± 3.5 mmHg; P<0.05) but did not change PHE pressor reactivity. Hexamethonium reduced basal BP in control but not in ouabain-treated rats. However, hexamethonium + ouabain increased DAP sensitivity to PHE. Canrenone did not affect basal BP but blocked ouabain effects on SAP. However, after canrenone + ouabain administration, DAP pressor reactivity to PHE still increased. Enalapril and losartan reduced BP and abolished SAP and DAP responses to ouabain. Enalapril + ouabain reduced DAP reactivity to PHE, while losartan + ouabain reduced SAP and DAP reactivity to PHE. In conclusion, a small dose of ouabain administered to SHR increased BP without altering PHE pressor reactivity. Although the renin-angiotensin system (RAS), Na+ pump and autonomic reflexes are involved in the effects of ouabain on PHE reactivity, central mechanisms might blunt the actions of ouabain on PHE pressor reactivity. The effect of ouabain on SAP seems to depend on the inhibition of both Na+ pump and RAS, whereas the effect on DAP seems to depend only on RAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen has been associated with a reduction in the incidence of myocardial infarction. However, the effects of tamoxifen on coronary reactivity have not been fully elucidated. The objective of this study was to determine the effects of chronic treatment with tamoxifen on coronary vascular reactivity in spontaneously hypertensive rats (SHR). Female SHR were divided into four groups (N = 7 each): sham-operated (SHAM), sham-operated and treated with tamoxifen (10 mg/kg) by gavage for 90 days (TAMOX), ovariectomized (OVX), and ovariectomized and treated with tamoxifen (OVX+TAMOX). Mean arterial pressure (MAP), heart rate (HR), coronary perfusion pressure (CPP), and coronary vascular reactivity were measured. MAP and HR were reduced (9.42 and 11.67%, respectively) in the OVX+TAMOX group compared to the OVX group (P < 0.01). The coronary vascular reactivity of the OVX+TAMOX group presented smaller vasoconstrictor responses to acetylcholine (2-64 µg) when compared to the OVX group (P < 0.01) and this response was similar to that of the SHAM group. The adenosine-induced vasodilator response was greater in the TAMOX group compared to the SHAM and OVX groups (P < 0.05). Baseline CPP was higher in OVX+TAMOX and TAMOX groups (136 ± 3.6 and 130 ± 1.5 mmHg) than in OVX and SHAM groups (96 ± 2 and 119 ± 2.3 mmHg; P < 0.01). Tamoxifen, when combined with OVX, attenuated the vasoconstriction induced by acetylcholine and increased the adenosine-induced vasodilatory response, as well as reducing the MAP, suggesting beneficial effects of tamoxifen therapy on coronary vascular reactivity after menopause.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sex hormones modulate the action of both cytokines and the renin-angiotensin system. However, the effects of angiotensin I-converting enzyme (ACE) on the proinflammatory and anti-inflammatory cytokine levels in male and female spontaneously hypertensive rats (SHR) are unclear. We determined the relationship between ACE activity, cytokine levels and sex differences in SHR. Female (F) and male (M) SHR were divided into 4 experimental groups each (n = 7): sham + vehicle (SV), sham + enalapril (10 mg/kg body weight by gavage), castrated + vehicle, and castrated + enalapril. Treatment began 21 days after castration and continued for 30 days. Serum cytokine levels (ELISA) and ACE activity (fluorimetry) were measured. Male rats exhibited a higher serum ACE activity than female rats. Castration reduced serum ACE in males but did not affect it in females. Enalapril reduced serum ACE in all groups. IL-10 (FSV = 16.4 ± 1.1 pg/mL; MSV = 12.8 ± 1.2 pg/mL), TNF-α (FSV = 16.6 ± 1.2 pg/mL; MSV = 12.8 ± 1 pg/mL) and IL-6 (FSV = 10.3 ± 0.2 pg/mL; MSV = 7.2 ± 0.2 pg/mL) levels were higher in females than in males. Ovariectomy reduced all cytokine levels and orchiectomy reduced IL-6 but increased IL-10 concentrations in males. Castration eliminated the differences in all inflammatory cytokine levels (IL-6 and TNF-α) between males and females. Enalapril increased IL-10 in all groups and reduced IL-6 in SV rats. In conclusion, serum ACE inhibition by enalapril eliminated the sexual dimorphisms of cytokine levels in SV animals, which suggests that enalapril exerts systemic anti-inflammatory and anti-hypertensive effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance training evokes myocardial adaptation; however, the effects of a single resistance exercise session on cardiac performance are poorly understood or investigated. This study aimed to investigate the effects of a single resistance exercise session on the myocardial contractility of spontaneously hypertensive rats (SHRs). Male 3-month-old SHRs were divided into two groups: control (Ct) and exercise (Ex). Control animals were submitted to sham exercise. Blood pressure was measured in conscious rats before the exercise session to confirm the presence of arterial hypertension. Ten minutes after the exercise session, the animals were anesthetized and killed, and the hearts were removed. Cardiac contractility was evaluated in the whole heart by the Langendorff technique and by isometric contractions of isolated left ventricular papillary muscles. SERCA2a, phospholamban (PLB), and phosphorylated PLB expression were investigated by Western blot. Exercise increased force development of isolated papillary muscles (Ex=1.0±0.1 g/mg vs Ct=0.63±0.2 g/mg, P<0.05). Post-rest contraction was greater in the exercised animals (Ex=4.1±0.4% vs Ct=1.7±0.2%, P<0.05). Papillary muscles of exercised animals developed greater force under increasing isoproterenol concentrations (P<0.05). In the isolated heart, exercise increased left ventricular isovolumetric systolic pressure (LVISP; Δ +39 mmHg; P<0.05) from baseline conditions. Hearts from the exercised rats presented a greater response to increasing diastolic pressure. Positive inotropic intervention to calcium and isoproterenol resulted in greater LVISP in exercised animals (P<0.05). The results demonstrated that a single resistance exercise session improved myocardial contractility in SHRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'hypertension artérielle est l'une des principales causes de morbidité et de mortalité dans le monde. La compréhension des mécanismes qui sont à la base du développement de l'hypertension offrira de nouvelles perspectives pour un meilleur contrôle de l'hypertension. Nous avons précédemment montré que le niveau des protéines Giα-2 et Giα-3 est augmenté chez les rats spontanément hypertendus (SHR) avant l'apparition de l'hypertension. Le traitement avec les inhibiteurs de l’enzyme de conversion de l’Angiotensine (IEC) est associé à une diminution de l’expression des protéines Gi. De plus, l'injection intrapertoneale de la toxine de la coqueluche inactive les deux protéines Giα et empêche le développement de l'hypertension chez les SHR. Cependant, la contribution spécifique des protéines Giα-2 et Giα-3 dans le développement de l'hypertension n'est pas encore connue. Dans la présente étude, l’Anti-sens oligodésoxynucléotide (AS-ODN) de Giα-2 et Giα-3 (1mg/Kg en poids corporel) encapsulé dans des liposomes cationiques PEG / DOTAP/ DOPE ont été administrés par voie intraveineuse aux SHR pré-hypertendus âgé de trois semaines et aux Wistar Kyoto (WKY) rats de même âge. Les contrôles des WKY et SHR non traités ont été injectés avec du PBS stérile, liposomes vides ou oligomères sens. La pression artérielle (PA) a été suivie chaque semaine en utilisant la technique manchon caudal. Les rats ont été sacrifiés à l'âge de six semaines et neuf semaines. Le coeur et l'aorte ont été utilisés pour étudier l'expression des protéines Gi. Le knockdown des protéines Giα-2 par l’injection de Giα-2-AS a empêché le développement de l'hypertension à l'âge de six semaines. Par la suite, la PA a commencé à augmenter rapidement et a atteint le niveau que l'on retrouve dans les groupes témoins à l'âge de neuf semaines. D'autre part, la PA du groupe traité avec le Giα-3-AS a commencé à augmenter à l'âge de quatre semaines. Dans le groupe des SHR-Giα-3-AS, la PA a augmenté à l’âgé de six semaines, mais moins que celle de SHR-CTL. Le coeur et l'aorte obtenues des SHR Giα-2-AS et Giα-3-AS à partir de l’âgé de six semaines ont eu une diminution significative de l’expression des protéines Giα-2 et Giα-3 respectivement. Dans le groupe des WKY Giα-2-AS et Giα-3-AS l'expression des protéines Giα-2 et Giα-3 respectivement a diminué malgré l'absence de changement dans la PA par rapport aux WKY CTL. À l'âge de neuf semaines, les SHR traités avec du Giα-2-AS et Giα-3-AS avaient la même PA et expression des protéines Gi que le SHR CTL. Ces résultats suggèrent que les deux protéines Giα-2 et Giα-3 sont impliqués dans le développement de l'hypertension chez les SHR, mais le knockdown de Giα-2 et pas de Giα-3 a empêché le développement de l'hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension can result from neuronal network imbalance in areas of central nervous system that control blood pressure, such as the nucleus tractus solitarius (NTS). There are several neurotransmitters and neuromodulatory substances within the NTS, such as adenosine, which acts on purinoreceptors A(2a) (A(2a)R). The A(2a)R modulates neurotransmission in the NTS where its activation may induce decrease in blood pressure by different mechanisms. Nicotine is a molecule that crosses the hematoencephalic barrier and acts in several areas of central nervous system including the NTS, where it may interact with some neurotransmitter systems and contributes to the development of hypertension in subjects with genetic predisposition to this disease. In this study we first determined A(2a)R binding, protein, and mRNA expression in dorsomedial medulla oblongata of neonate normotensive (WKY) and spontaneously hypertensive rats (SHR). Subsequently, we analyzed the modulatory effects of nicotine on A(2a)R in cell culture in order to evaluate its possible involvement in the development of hypertension. Data showed a decreased A(2a)R binding and increased protein and mRNA expression in tissue sample and culture of dorsal brainstem from SHR compared with those from WKY rats at basal conditions. Moreover, nicotine modulated A(2a)R binding, protein, and mRNA expression in cells from both strains. Interestingly, nicotine decreased A(2a)R binding and increased protein levels, as well as, induced a differential modulation in A(2a)R mRNA expression. Results give us a clue about the mechanisms involved in the modulatory effects of nicotine on A(2a)R as well as hypothesize its possible contribution to the development of hypertension. In conclusion, we demonstrated that A(2a)R of SHR cells which differ from WKY and nicotine differentially modulates A(2a)R in dorsal brainstem cells of SHR and WKY.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence of mild hypertension in women and female rats and our preliminary observation showing that training is not effective to reduce pressure in female as it does in male spontaneously hypertensive rats (SHR) prompt us to investigate the effects of gender on hemodynamic pattern and microcirculatory changes induced by exercise training. Female SHR and normotensive controls (Wistar- Kyoto rats) were submitted to training (55% VO2 peak; 3 months) or kept sedentary and instrumented for pressure and hindlimb flow measurements at rest and during exercise. Heart, kidney, and skeletal muscles (locomotor/ nonlocomotor) were processed for morphometric analysis of arterioles, capillaries, and venules. High pressure in female SHR was accompanied by an increased arteriolar wall: lumen ratio in the kidney (+30%; P < 0.01) but an unchanged ratio in the skeletal muscles and myocardium. Female SHR submitted to training did not exhibit further changes on the arteriolar wall: lumen ratio and pressure, showing additionally increased hindlimb resistance at rest (+29%; P < 0.05). On the other hand, female SHR submitted to training exhibited increased capillary and venular densities in locomotor muscles (+50% and 2.3- fold versus sedentary SHR, respectively) and normalized hindlimb flow during exercise hyperemia. Left ventricle pressure and weight were higher in SHR versus WKY rats, but heart performance (positive dP/dt(max) and negative dP/dt(max)) was not changed by hypertension or training, suggesting a compensated heart function in female SHR. In conclusion, the absence of training- induced structural changes on skeletal muscle and myocardium arterioles differed from changes observed previously in male SHR, suggesting a gender effect. This effect might contribute to the lack of pressure fall in trained female SHRs.