584 resultados para Spinning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs loading (i.e. up to Vf 0.12) resulted in further enhancements up to 22.8 GPa and 254 MPa in Modulus and ultimate stress, respectively. We also show the enhancement of electrochemical supercapacitor performance of composite fibers. These outstanding mechanical, electrical and electrochemical performances place these fibers among the best performing multifunctional composite fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non-solvent precipitation, dispersion destabilization, ionic cross-linking, and polyelectrolyte complexation. One-step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post-treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a significant enhancement of modulus, tensile strength, electrical conductivity and two cell electrode specific capacitance of PEDOT:PSS–SWNT composite fibers to 5.2 GPa, 200 MPa, 450 S cm−1 and 59 F g−1 by the rate of dY/dVf = 89 GPa, dσ/dVf = 3.2 GPa, dS/dVf = 13 300 S cm−1 and 6 folds, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simplified wet-spinning process for the production of continuous poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers is reported. Conductivity enhancement of PEDOT:PSS fibers up to 223 S cm−1 has been demonstrated when these fibers are exposed to ethylene glycol as a post-synthesis processing step. In a new spinning approach it is shown that by employing a spinning formulation consisting of an aqueous blend of PEDOT:PSS and poly(ethlylene glycol), the need for post-spinning treatment with ethylene glycol is eliminated. With this approach, 30-fold conductivity enhancements from 9 to 264 S cm−1 are achieved with respect to an untreated fiber. This one-step approach also demonstrates a significant enhancement in the redox properties of the fibers. These improvements are attributed to an improved molecular ordering of the PEDOT chains in the direction of the fiber axis and the consequential enrichment of linear (or expanded-coil like) conformation to preference bipolaronic electronic structures as evidenced by Raman spectroscopy, solid-state electron spin resonance (ESR) and in situ electrochemical ESR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer-single walled carbon nanotube (SWNT)-biopolymer fibers were prepared using a continuous flow spinning approach. Polyelectrolyte complexation was facilitated by injecting a SWNT-biopolymer dispersion into a coagulation bath containing a biopolymer of opposite charge. We showed that the ability to spin fibers and their properties depend on processing conditions such as polyelectrolyte pH, sonolysis regime (conditions employed to disperse SWNT) and the order of adding the anionic and cationic biopolymer solutions. Maximizing the ionic nature through changes in the pH increased spin-ability, while combining a sonicated dispersion with an as-prepared (non-sonicated) polyelectrolyte solution allowed us to optimize sonolysis conditions while retaining spin-ability of fibers with smooth surface morphology. Addition of the cationic biopolymer-SWNT dispersion to the anionic biopolymer solution resulted in mechanical reinforcement with the increase in SWNT loading fraction. All fibers decreased their electrical resistance upon exposure to water vapor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overtone NMR spectroscopy has the potential to provide high-resolution 14N solid-state NMR spectra. The technique was first developed during the 1980s but has only recently been successfully combined with magic angle spinning (MAS), providing improved sensitivity and resolution as well as enabling more advanced approaches such as indirect detection and signal enhancement methods. This report provides a brief background to 14N overtone NMR, describing the ways in which it differs from conventional NMR and the challenges that arise as a result. The effects of MAS on the overtone spectrum are then presented and illustrated with numerous experimental and simulated examples. Finally, several recent developments enabled by MAS are described and some potential future directions are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search procedure based on a control function parametrization method, using linear programming to obtain numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small computers and to generate computer programs of general application. The dynamic modeling, the magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified the feasibility of the formulation thus derived and have shown a notable improvement in performance.