904 resultados para Spinal Loading
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Background: Spinal muscular atrophy is a common autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. Identification of spinal muscular atrophy carriers has important implications for individuals with a family history of the disorder and for genetic counseling. The aim of this study was to determine the frequency of carriers in a sample of the nonconsanguineous Brazilian population by denaturing high-performance liquid chromatography (DHPLC). Methods: To validate the method, we initially determined the relative quantification of DHPLC in 28 affected patients (DHPLC values: 0.00) and 65 parents (DHPLC values: 0.49-0.69). Following quantification, we studied 150 unrelated nonconsanguineous healthy individuals from the general population. Results: Four of the 150 healthy individuals tested (with no family history of a neuromuscular disorder) presented a DHPLC value in the range of heterozygous carriers (0.6-0.68). Conclusions: Based on these results, we estimated there is a carrier frequency of 2.7% in the nonconsanguineous Brazilian population, which is very similar to other areas of the world where consanguineous marriage is not common. This should be considered in the process of genetic counseling and risk calculations. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) Pro56Ser Mutation has been identified in Brazilian families showing various motor neuron syndromes. However, the neurophysiological characteristics of these patients have not been detailed, and some questions Still need to be solved, such as the possible presence of myotonia and the origin of the abdominal protrusion seen in most patients. The eventual finding of suggestive electrophysiological characteristics would be helpful not only for clinical diagnosis but also to selection of the appropriate DNA test. To clarify these questions we carried out sensory and motor conduction Studies, including symphatetic skin response, and needle examination in six genetically proven affected members. The electromyographic findings were those of a slowly progressive motor neuron disorder. Topographically, the abdominal muscles were severely affected, but the facial and laryngeal muscles were preserved or very mildly involved. Sensory conduction studies and sympathetic Skin responses were normal. No myotonic discharge was recorded. These findings are indistinguishable from those of other motor neuron disorders, although the predominant involvement of the proximal limbs and of the abdominal muscles may be of some help in the appropriate clinical setting.
Resumo:
Background. Researchers have proposed the restoration of abfraction lesions, but limited information is available about the effects of occlusal loading on the margins of such restorations. Because abfraction is a well-recognized problem, the authors conducted a study to assess the effects of occlusal loading on the margins of cervical restorations. Methods. The authors prepared 40 wedge-shaped cavities in extracted premolars and restored them with a resin-based composite. They subjected specimens to occlusal loading (150 newtons, 101 cycles) on the buccal cusp, on the central fossa or on the lingual cusp, and they stored 1 the control group, specimens in deionized water. The authors used fluorescein to delimit marginal defects and evaluated the defects by using laser scanning confocal microscopy. Results. Results of chi(2) and Kruskal-Wallis tests (P < .05) showed that specimens subjected to occlusal loading had a higher percentage of marginal gaps (53.3 percent) than did the control specimens (10.0 percent). There were no differences between groups in marginal defect formation or in defect location, length or width. Conclusions. Occlusal loading led to a significant increase in gap formation at the margins of cervical resin-based composite restorations. Clinical Implications. The clinician cannot underestimate the effects of occlusal loading When restoring teeth with cervical wedge-shaped lesions. If occlusal loading is the main factor contributing to lesion formation, the clinician should identify and treat it before placing the restoration or otherwise run the risk that the restorative treatment will fail because of marginal gap formation.
Resumo:
This study evaluated the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber posts and varying quantities of coronal dentin. Sixty freshly extracted upper canines were randomly divided into groups of 10 teeth each. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis. Data were analyzed by 1-way analysis of variance and Tukey test (alpha = .05). Significant differences (P < .001) were found among the mean fracture forces of the test groups (positive control, 0 mm, 1 mm, 2 mm, 3 mm, and negative control groups: 1022.82 N, 1008.22 N, 1292.52 N, 1289.19 N, 1255.38 N, and 1582.11, respectively). These results suggested that the amount of coronal dentin did not significantly increase the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber post and composite resin core. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e52-e57)
Resumo:
Examined the barriers faced by people with Spinal Cord Injuries (SCI) when integrating their Assistive Technology (AT) into the workplace, as well as factors that contribute to successful integration. In-depth interviews were taken with 5 men (aged 37-50 yrs) with SCI, 3 of their employers and 2 co-workers. Results indicate that in addition to the barriers previously outlined in the literature related to funding the technology, time delays, information availability, training and maintenance, other issues were highlighted. Implications for service providers are considered in relation to these barriers and the factors that prompted successful integration. The author discusses limitations of the study and makes recommendations for future research. (PsycINFO Database Record (c) 2007 APA, all rights reserved)
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
Resumo:
The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Changes in gene expression have been measured 24 h after injury to mammalian spinal cords that can and cannot regenerate In opossums there is a critical period of development when regeneration stops being possible at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not By the use of marsupial cDNA microarrays we detected 158 genes that respond differentially to injury at the two ages critical for regeneration For selected candidates additional measurements were made by real time PCR and sites of their expression were shown by immunostaining Candidate genes have been classified so as to select those that promote or prevent regeneration Up regulated by injury at 8 days and/or down regulated by injury at 13 days were genes known to promote growth, such as Mitogen activated protein kinase kinase 1 or transcripton factor TCF7L2 By contrast, at 13 days up regulation occurred of Inhibitory molecules including annexins ephrins and genes related to apoptosis and neurodegeneranve diseases Certain genes such as calmodulin 1 and NOGO changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 day preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules singly or in combination, promote and prevent central nervous system regeneration (C) 2010 Elsevier B V All rights reserved
Resumo:
Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30 g force, 1 min). Two groups were analyzed: injured group (SCI, n = 33) and laminectomy only (Sham, n = 15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24 h after injury. with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037 +/- 1.198): the Sham animals maintained the highest BMS score (8.981 +/- 0.056). p < 0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581 +/- 0.871) than in the Sham animals (15.80 +/- 1.166), p < 0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Spinal signs found in association with atypical chest and abdominal pain may suggest the pain is referred from the thoracic spine. However, the prevalence of such signs in these conditions has rarely been compared with that in those without pain. In this study, the prevalence of spinal signs and dysfunction in patients with back, chest and abdominal pain is compared with that in pain free controls. The aim of the study is to determine the significance of spinal findings in patients with such pain. Methods: A general practitioner blinded to the patients' histories performed a cervical and thoracic spinal examination on general practice patients with back, chest and/or abdominal pain and on controls without pain. Thoracic intervertebral dysfunction was diagnosed on the basis of movement and palpation findings. Results: Seventy three study patients plus 24 controls, were examined. For cervical spinal signs, pain in the back, chest and/or abdomen was associated with pain with active movements and overpressure at end range and with loss of movement range. For thoracic spinal signs, this association held for pain with active movements and overpressure, but not with loss of movement range. The prevalence of thoracic intervertebral dysfunction was 25.0% in controls, 65.5% with chest/abdominal pain, 72.0% with back pain and 79.0% with back pain with chest/abdominal pain. This prevalence was higher with chest pain than with abdominal pain. Conclusions: The results show an association, but not a causal link between thoracic intervertebral dysfunction and atypical chest/abdominal pain. A spinal examination should be performed routinely assessing these conditions. The minimum examination for the detection of intervertebral dysfunction is testing for pain with spinal movements and palpation for tenderness. The interpretation of positive signs requires knowledge of their prevalence in pain free controls and in patients with visceral disease
Resumo:
P>This study assessed the effect of simulated mastication on the retention of two stud attachment systems for 2-implants overdentures. Sixteen specimens, each simulating an edentulous ridge with implants and an overdenture were divided into two groups, according to the attachment system: Group I (Nobel Biocare ball-socket attachments) and Group II (Locator attachments). Retention forces were measured before and after 400 000 simulated masticatory loads in a customised device. Data were compared by two-way anova followed by Bonferroni test (alpha = 0 center dot 05). Group I presented significantly lower retention forces (Newtons) than Group II at baseline (10 center dot 6 +/- 3 center dot 6 and 66 center dot 4 +/- 16 center dot 0, respectively). However, differences were not significant after 400 000 loads (7 center dot 9 +/- 4 center dot 3 and 21 center dot 6 +/- 17 center dot 0). The number of cycles did not influence the measurements in Group I, whereas a non-linear descending curve was found for Group II. It was concluded that simulated mastication resulted in minor changes for the ball attachment tested. Nevertheless, it reduced the retention of Locator attachments to 40% of the baseline values, what suggests that mastication is a major factor associated with maintenance needs for this system.