926 resultados para Sperm pleiomorphisms
Resumo:
Gemstone Team FISH
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO2 and global climate change. A number of studies have therefore investigated the effects of elevated pCO2 on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that an hypoxic event could have on reproduction in a future high CO2 ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin Paracentrotus lividus exposed to elevated pCO2 for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO2 ocean. Sperm swimming speed increased under elevated pCO2 and decreased under hypoxic conditions resulting in the elevated pCO2 and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO2 and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO2 on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.
Resumo:
PAWP, postacrosomal sheath WW domain binding protein, is a novel sperm protein identified as a candidate sperm borne, oocyte-activating factor (SOAF). PAWP induces both early and later egg activation events including meiotic resumption, pronuclear formation and egg cleavage. Based on the fact that calcium increase is universally accepted as the sole requirement for egg activation, we hypothesized that PAWP is an upstream regulator of the calcium signaling pathway during fertilization. Intracellular calcium increase was detected by two-photon laser scanning fluorescence microscopy following microinjection of recombinant PAWP into Xenopus oocytes, bolstering our hypothesis and suggesting the involvement of a novel PAWP-mediated signaling pathway during fertilization. The N-terminal of PAWP shares a high homology to WW domain binding protein while the C-terminal half contains a functional PPXY motif, which allows it to interact with group I WW domain proteins. These structural considerations together with published data indicating that PPXY synthetic peptide derived from PAWP inhibits ICSI-induced fertilization led to the hypothesis that PAWP triggers egg activation by binding to a group I WW domain protein in the oocyte. By far-Western analysis of oocyte cytoplasmic fraction, PAWP was found to bind to a 52 kDa protein. The competitive inhibition studies with PPXY synthetic peptide, WW domain constructs, and their point mutants demonstrated that the interaction between PAWP and its binding partner is specifically via the PPXY-WW domain module. The 52 kDa protein band crossreacted with antibodies against group I WW domain protein YAP in Western blot assay, indicating that this 52 kDa PAWP binding partner is either YAP or a YAP-related protein. In addition, the far-Western competitive inhibition studies with recombinant GST fusion protein YAP and another WW domain-containing protein, TAZ, demonstrated that the binding of PAWP to its binding partner was significantly reduced by TAZ, providing evidence that TAZ could be the 52 kDa protein candidate. Mass spectrometry was employed to identify this PAWP binding partner candidate. However, due to the low abundance of the candidate protein and the complexity of the sample, several strategies are still needed to enrich this protein. This study correlates PAWP induced meiotic resumption and calcium efflux at fertilization and uncovers a 52 kDa candidate WW domain protein in the oocyte cytoplasm that most likely interacts with PAWP to trigger egg activation.
Resumo:
During mammalian fertilization, the exposure of the inner acrosomal membrane (IAM) after acrosomal exocytosis is essential for the secondary binding between sperm and zona pellucida (ZP) of the oocyte, a prerequisite for sperm penetration through the ZP. The identification of the sperm protein(s) responsible for secondary binding has posed a challenge for researchers. We were able to isolate a sperm head fraction in which the IAM was exposed. Attached to the IAM was an electon dense layer, which we termed the IAM extracellular coat (IAMC). The IAMC was also observable in acrosome reacted sperm. High salt extraction removed the IAMC including a prominent 38 kDa polypeptide, referred to as IAM38. Antibodies raised against IAM38 confirmed its presence in the IAMC of intact, sonicated, and acrosome-reacted sperm. Sequencing of IAM38 revealed it as the ortholog of porcine SP38, a protein that was found to bind specifically to ZP2 but whose intra-acrosomal location was not known. We showed that IAM38 occupied the leading edge of sperm contact with the zona pellucida during fertilization, and that secondary binding and fertilization were inhibited in vitro by antibodies directed against IAM38. As for the mechanism of secondary sperm-zona binding by IAM38, we provided evidence that the synthetic peptide derived from the ZP2-binding motif of IAM38 had a competitive inhibitory effect on both sperm-zona binding and fertilization while its mutant form was ineffective. In summary, our study provides a novel approach to obtain direct information on the peripheral and integral protein composition of the IAM and consolidates IAM38 as a genuine secondary sperm-zona binding protein. In addition, our investigation also provides an ultrastructural description of the origin, expression and assembly of IAM38 during spermatogenesis. It shows that IAM38 is originally secreted by the Golgi apparatus as part of the dense contents of the proacrosomic granules but later, during acrosome capping phase of spermiogenesis, is redistributed to the inner periphery of the acrosomal membrane. This relocation occurs at the time of acrosomal compaction, an obligatory structural change that fails to occur in Zpbp1-/- knockout mice, which do not express IAM38 and are infertile.
Resumo:
Capacitation is essential for fertilization of ovulated oocytes. Capacitation is correlated with activation of a signal transduction pathway leading to protein tyrosine phosphorylation, an essential prerequisite for fertilization. Oviductin has been shown to bind to the acrosomal cap and the equatorial segment region of the sperm head. In light of findings reported in previous studies, we hypothesized that estrus stage-specific oviductin (EOV) enhances tyrosine phosphorylation. Immunofluorescent detection by light and confocal microscopy and immunogold labeling by electron microscopy and surface replica techniques were used to localize tyrosine phosphorylated proteins to the equatorial segment region and midpiece after incubation in medium in the presence or absence of EOV. In the presence of EOV, an increase in tyrosine phosphorylation in the equatorial segment region was observed as early as 5 minutes after incubation. On prolonging incubation in medium containing EOV immunostaining further increased, indicative of increased levels of tyrosine phosphorylation of sperm proteins as capacitation proceeds. Regardless of the presence or absence of EOV, phosphotyrosine expression was observed along the tail, specifically at the midpiece. However, this reactivity was enhanced in the presence of EOV. Western blot analysis of NP-40 extractable and non-extractable sperm proteins confirmed these observations. NP-40 extractable sperm proteins (25, 37, 44kDa) and non-extractable sperm proteins (70, 83, 90kDa) showed increased intensity when sperm were capacitated in the presence of EOV after 5-, 60-, 120- and 180-minutes of capacitation. Mass spectrophotometric analysis identified enolase, ATP-specific succinyl CoA, succinate CoA ligase, zona pellucida binding protein, heat shock protein 90, aconitase and hexokinase as proteins that undergo enhancement in tyrosine phosphorylation in the presence of EOV. The proteins identified are known to be involved in specific functions including cellular metabolism, molecular chaperoning and normal sperm development. In summary, the present investigation has provided new evidence showing that sperm capacitated in vitro in the presence of EOV display an enhanced expression of tyrosine phosphorylation compared to sperm incubated in capacitating medium alone. These results indicate that inclusion of oviductin in media used for in vitro fertilization (IVF) may improve success rates of IVF by enhancing the signaling pathways involved in sperm capacitation.
Resumo:
Background: In order to isolate the â??bestâ?? sperm for assisted conception a discontinuous two-step density gradient centrifugation is usually employed. This technique is known to isolate a subpopulation with good motility, morphology and nuclear DNA (nDNA) integrity. As yet its ability to isolate sperm with unfragmented mitochondrial DNA (mtDNA) is unknown. Methods: Semen was obtained from men (n=28) attending our Regional Fertility Centre for infertility investigations. We employed a modified long polymerase chain reaction to study mtDNA and a modified alkaline Comet assay to determine nDNA fragmentation. Results: The high- density fraction displayed significantly more wild type mtDNA (75% of samples) than that of the low- density fraction (25% of samples). In the high-density fraction, there was a higher incidence of single, rather than double or multiple deletions and the deletions were predominantly small scale (0.1-4.0kb). There was a strong correlation between nDNA fragmentation, the number of mtDNA deletions (r=0.7, p
Resumo:
Successful fertilization depends upon the activation of metaphase II arrested oocytes by sperm-borne oocyte activating factor (SOAF). Failure of oocyte activation is considered as the cause of treatment failure in a proportion of infertile couples. SOAF induces the release of intracellular calcium in oocyte which leads to meiotic resumption and pronuclear formation. Calcium release is either in the form of single calcium transient in echinoderm and amphibian oocytes or several calcium oscillations in ascidian and mammalian oocytes. Although the SOAF attributes are established, it is not clear which sperm protein(s) play such role. Sperm postacrosomal WW binding protein (PAWP) satisfies a developmental criteria set for a candidate SOAF. This study shows that recombinant human PAWP protein or its transcript acts upstream of calcium release and fully activates the amphibian and mammalian oocytes. Interference trials provided evidence for the first time that PAWP mediates sperm-induced intracellular calcium release through a PPXY/WWI domain module in Xenopus, mouse and human oocytes. Clinical applications of PAWP were further investigated by prospective study on the sperm samples from patients undergoing intracytoplasmic sperm injection (ICSI). PAWP expression level, analyzed by flow cytometry, was correlated to ICSI success rate and embryonic development. This study also explored the developmental expression of the other SOAF candidate, PLCζ in male reproductive system and its function during fertilization. Our findings showed for the first time that PLCζ most likely binds to the sperm head surface during epididymal passage and is expressed in epididymis. We demonstrated that PLCζ is also compartmentalized early in spermiogenesis and thus could play an important role during spermiogenesis. Detailed analysis of in vitro fertilization revealed that PLCζ disappears from sperm head during acrosome reaction and is not detectable during sperm incorporation into the oocyte cytoplasm. In conclusion, this dissertation provides evidence for the essential non-redundant role of sperm PAWP in amphibian and mammalian fertilization; recommends PAWP as a biomarker for prediction of ICSI outcomes in infertile couples; and proposes that sperm PLCζ may have functions other than inducing oocyte activation during fertilization.
Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity
Resumo:
Objective: To investigate effects of cryopreservation on sperm motility and DNA integrity. Design: Pre-cryopreservation and post-cryopreservation analysis of motility and DNA integrity of semen and prepared sperm samples. Setting: A hospital andrology laboratory. Patient(s): Forty men attending the Regional Fertility Centre, Belfast, Northern Ireland. Intervention(s): Each sample was divided, and an aliquot was frozen unprepared. Remaining aliquots were prepared by Percoll density centrifugation (95.0:47.5) or direct swim-up procedure and divided into aliquots to allow direct comparison of fresh and frozen semen and prepared sperm (frozen with or without the addition of seminal plasma) from the same ejaculate. Samples were frozen by static-phase vapor cooling and being plunged into liquid nitrogen. Thawing was carried out at room temperature. Main Outcome Measure(s): Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis (comet) assay, and motility was determined using computer-assisted semen analysis. Result(s): Sperm frozen unprepared in seminal fluid appeared more resistant to freezing damage than frozen prepared sperm. Further improvements can be achieved by selecting out the subpopulation of sperm with best motility and DNA integrity and freezing these sperm in seminal plasma, making this the optimal procedure. Conclusion(s): Freezing sperm in seminal plasma improves postthaw motility and DNA integrity.