936 resultados para Species distribution modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the ecologically relevant spatial scales for predicting species occurrences is an important concept when determining species–environment relationships. Therefore species distribution modelling should consider all ecologically relevant spatial scales. While several recent studies have addressed this problem in artificially fragmented landscapes, few studies have researched relevant ecological scales for organisms that also live in naturally fragmented landscapes. This situation is exemplified by the Australian rock-wallabies’ preference for rugged terrain and we addressed the issue of scale using the threatened brush-tailed rock-wallaby (Petrogale penicillata) in eastern Australia. We surveyed for brush-tailed rock-wallabies at 200 sites in southeast Queensland, collecting potentially influential site level and landscape level variables. We applied classification trees at either scale to capture a hierarchy of relationships between the explanatory variables and brush-tailed rock-wallaby presence/absence. Habitat complexity at the site level and geology at the landscape level were the best predictors of where we observed brush-tailed rock-wallabies. Our study showed that the distribution of the species is affected by both site scale and landscape scale factors, reinforcing the need for a multi-scale approach to understanding the relationship between a species and its environment. We demonstrate that careful design of data collection, using coarse scale spatial datasets and finer scale field data, can provide useful information for identifying the ecologically relevant scales for studying species–environment relationships. Our study highlights the need to determine patterns of environmental influence at multiple scales to conserve specialist species such as the brush-tailed rock-wallaby in naturally fragmented landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location: Cloud forests in Mexico. Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five. Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas. Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses. © 2013 John Wiley & Sons Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os fatores que explicam a distribuição observada em plantas e animais é uma pergunta que intriga naturalistas, biogeógrafos e ecólogos há mais de um século. Ainda nos primórdios da disciplina de ecologia, as tolerâncias ambientais já haviam sido apontadas como as grandes responsáveis pelo padrão observado da distribuição dos seres vivos, o que mais tarde levou à concepção de nicho ecológico das espécies. Nos últimos anos, o estudo das distribuições dos organismos ganhou grande impulso e destaque na literatura. O motivo foi a maior disponibilidade de catálogos de presença de espécies, o desenvolvimento de bancos de variáveis ambientais de todo o planeta e de ferramentas computacionais capazes de projetar mapas de distribuição potencial de um dado organismo. Estes instrumentos, coletivamente chamados de Modelos de Distribuição de Espécies (MDEs) têm sido desde então amplamente utilizados em estudos de diferentes escopos. Um deles é a avaliação de potenciais áreas suscetíveis à invasão de organismos exóticos. Este estudo tem, portanto, o objetivo de compreender, através de MDEs, os fatores subjacentes à distribuição de duas espécies de corais escleractíneos invasores nativos do Oceano Pacífico e ambas invasoras bem sucedidas de diversas partes do Oceano Atlântico, destacadamente o litoral fluminense. Os resultados mostraram que os modelos preditivos da espécie Tubastraea coccinea (LESSON, 1829), cosmopolita amplamente difundida na sua região nativa pelo Indo- Pacífico demonstraram de maneira satisfatória suas áreas de distribuição nas áreas invadidas do Atlântico. Sua distribuição está basicamente associada a regiões com alta disponibilidade de calcita e baixa produtividade fitoplanctônica. Por outro lado, a aplicação de MDEs foi incapaz de predizer a distribuição de T. tagusensis (WELLS,1982) no Atlântico. Essta espécie, ao contrário de sua congênere, tem distribuição bastante restrita em sua região nativa, o arquipélago de Galápagos. Através de análises posteriores foi possível constatar a mudança no nicho observado durante o processo de invasão. Finalmente, o sucesso preditivo para T. coccinea e o fracasso dos modelos para T. tagusensis levantam importantes questões sobre quais os aspectos ecológicos das espécies são mais favoráveis à aplicação de MDEs. Adicionalmente, lança importantes ressalvas na utilização recentemente tão difundida destas ferramentas como forma de previsão de invasões biológicas e em estudos de efeitos de alterações climáticas sobre a distribuição das espécies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Retrospective genetic monitoring, comparing genetic diversity of extant populations with historical samples, can provide valuable and often unique insights into evolutionary processes informing conservation strategies. The Yellow marsh saxifrage (Saxifraga hirculus) is listed as ‘critically endangered’ in Ireland with only two extant populations. We quantified genetic changes over time and identified genotypes in extant populations that could be used as founders for reintroductions to sites where the species is extinct.

Location: Ireland.

Methods: Samples were obtained from both locations where the species is currently found, including the most threatened site at the Garron Plateau, Co. Antrim, which held only 13 individuals during 2011. Herbarium samples covering the period from 1886 to 1957 were obtained including plants from the same area as the most threatened population, as well as three extinct populations. In total, 422 individuals (319 present-day and 103 historical) were genotyped at six microsatellite loci. Species distribution modelling was used to identify areas of potentially suitable habitat for reintroductions.

Results: Level of phenotypic diversity within the most threatened population was significantly lower in the present-day compared with historical samples but levels of observed heterozygosity and number of alleles, whilst reduced, did not differ significantly. However, Bayesian clustering analysis suggested gradual lineage replacement over time. All three measures of genetic diversity were generally lower at the most threatened population compared with the more substantial extant populations in Co. Mayo. Species distribution modelling suggested that habitat at one site where the species is extinct may be suitable for reintroduction.

Main conclusions: The dominant genetic lineage in the most threatened population is rare elsewhere; thus, care needs to be taken when formulating any potential reintroduction programme. Our findings highlight both the need for genetic monitoring of threatened populations, but also for its swift implementation before levels of diversity become critically low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species’ gene pool, and even the extinction ofrare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occursympatrically. 
Methods: Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. polita, from 29 sites across their ranges in Ireland. In addition, species distributionmodelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios. 
Key Results: Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicatingthat populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species.
Conclusions: Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detectedin the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatricallywith its congener and where it is greatly outnumbered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum(LGM), some 20 000 years BP. The Leisler’s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrialDNAlineages,which probably diverged in separate glacial refugia. Awestern lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, collecting nearshore habitat information has been problematic. Existing methods, such as aerial and satellite image interpretation are limited due to the attenuation of light in the water column obscuring the seabed structure. The advent of airborne bathymetric LiDAR (Light Detection and Ranging) systems (laser scanning of the seabed) now provides high-resolution seabed ‘images’ in areas that were previously difficult to survey. LiDAR imagery is available for the entire coastline of Victoria, Australia to depths of around 25 m, after being initially collected for climate change modelling by the Future Coasts Program (http://www.climatechange.vic.gov.au/adapting-to-climate-change/future-coasts). This dataset has provided the opportunity to test its applicability to inform fisheries management. Detailed geophysical information combined with spatially explicit AbTrack GPS located fisheries records and targeted genetic sampling is used in this study to provide a better understanding of the extent of available fishing grounds, direction of fishing effort and stock population structure within the Victorian western zone abalone fishery.
The species distribution modelling technique MaxEnt was used to produce a potential habitat suitability map for abalone in an attempt to capture the effective footprint of the  fishery. Also, by interrogating the spatially defined effort localities, we demonstrate an approach that may be used to identify areas where fishing effort is concentrated, and how this parameter changes temporally.
Despite barriers to adult dispersal (soft sediment barriers between reef patches), the genetic study indicates that larval movement is able to homogenize the gene pool over  large geographic distances. The western, central and eastern zone abalone stocks in Victoria were found to be a single large panmictic unit. This indicates high levels of stock connectivity and no obvious impacts of Abalone Viral Ganglioneuritis (AVG) on the genetic health of western zone stocks. We used detailed seafloor structure information interpreted from LiDAR to inform a replicated hierarchical fine scale genetic sampling design. We demonstrated that there may be extensive migration among abalone stocks across the Victorian abalone fishery.
This is contrary to previous studies that suggest recruitment is highly localised. In combination, these findings provide a valuable insight into the biology of H. rubra and immediate benefits for fisheries management. We discuss these results in the context of predicting resilience and adaptive potential of H. rubra stocks to environmental pressures and the spread of heritable diseases.
Adoption pathways are also provided to benefit future stock augmentation activities to catalyse the recovery of AVG affected reef codes. As larval dispersal is likely to be spatially and temporally variable, some AVG affected stocks are likely to recover through natural recruitment, while others will benefit from augmentation activities to ‘kick-start’ stock recovery. Evidence of neutral genetic homogeneity across Victorian reef codes suggests that the relocation of animals is unlikely to have significant genetic risks; however the potential for locally adaptive genetic differences may exist, and should be taken into consideration in future stock augmentation planning.
When combined, the spatial and genetic analyses provide valuable insights into stock productivity within the western zone fishery. Reefs appear to be expansive and support much available habitat, and the movement of larvae among reef structures is likely to be extensive in this region. Consequently, we propose that colonisation success and productivity is likely to be driven by ecological factors such as resources and/or competition, or physical factors such as wave exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arboreal marsupials play an essential role in ecosystem function including regulating insect and plant populations, facilitating pollen and seed dispersal and acting as a prey source for higher-order carnivores in Australian environments. Primarily, research has focused on their biology, ecology and response to disturbance in forested and urban environments. We used presence-only species distribution modelling to understand the relationship between occurrences of arboreal marsupials and eco-geographical variables, and to infer habitat suitability across an urban gradient. We used post-proportional analysis to determine whether increasing urbanization affected potential habitat for arboreal marsupials. The key eco-geographical variables that influenced disturbance intolerant species and those with moderate tolerance to disturbance were natural features such as tree cover and proximity to rivers and to riparian vegetation, whereas variables for disturbance tolerant species were anthropogenic-based (e.g., road density) but also included some natural characteristics such as proximity to riparian vegetation, elevation and tree cover. Arboreal marsupial diversity was subject to substantial change along the gradient, with potential habitat for disturbance-tolerant marsupials distributed across the complete gradient and potential habitat for less tolerant species being restricted to the natural portion of the gradient. This resulted in highly-urbanized environments being inhabited by a few generalist arboreal marsupial species. Increasing urbanization therefore leads to functional simplification of arboreal marsupial assemblages, thus impacting on the ecosystem services they provide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location Cloud forests in Mexico.
Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five.
Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas.
Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native bees are important providers of pollination services, but there are cumulative evidences of their decline. Global changes such as habitat losses, invasions of exotic species and climate change have been suggested as the main causes of the decline of pollinators. In this study, the influence of climate change on the distribution of 10 species of Brazilian bees was estimated with species distribution modelling. We used Maxent algorithm (maximum entropy) and two different scenarios, an optimistic and a pessimistic, to the years 2050 and 2080. We also evaluated the percentage reduction of species habitat based on the future scenarios of climate change through Geographic Information System (GIS). Results showed that the total area of suitable habitats decreased for all species but one under the different future scenarios. The greatest reductions in habitat area were found for Melipona bicolor bicolor and Melipona scutellaris, which occur predominantly in areas related originally to Atlantic Moist Forest. The species analysed have been reported to be pollinators of some regional crops and the consequence of their decrease for these crops needs further clarification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by Biodiversity and Ecosystem Services in a Changing Climate Wenner-Gren Foundation Swedish Research Council The Royal Swedish Academy of Sciences Stiftelsen Anna-Greta Holger Crafoords Fund The Crafoord Foundation